[1]龚亮,阳盛洪,高亮,等.1例中国塔吉克族人全基因组重测序分析及其与高原适应关联的初步研究[J].第三军医大学学报,2019,41(07):665-672.
 GONG Liang,YANG Shenghong,GAO Liang,et al.Whole genome resequencing and correlation analysis with high altitude adaptation: a preliminary study of a Tajik male in China[J].J Third Mil Med Univ,2019,41(07):665-672.
点击复制

1例中国塔吉克族人全基因组重测序分析及其与高原适应关联的初步研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第07期
页码:
665-672
栏目:
基础医学
出版日期:
2019-04-15

文章信息/Info

Title:
Whole genome resequencing and correlation analysis with high altitude adaptation: a preliminary study of a Tajik male in China
作者:
龚亮阳盛洪高亮陈郁陈兴书罗勇军
陆军军医大学(第三军医大学):陆军卫勤训练基地军事医学地理学教研室,全军战救训练技术与器材研发实验室;解放军第957医院卫生处;解放军第950医院新疆军区高山病研究所
Author(s):
GONG Liang YANG Shenghong GAO Liang CHEN Yu1 CHEN Xingshu LUO Yongjun

Department of Military Medical Geography, Research and Development Laboratory of Military Combat Rescue Training Technology and Equipment, Army Health Service Training Base, Army Medical University (Third Military Medical University), Chongqing, 400038; Health Department, No.957 Hospital of PLA, Ali, Tibet Autonomous Region, 859000; Institute of Mountain Sickness of Xinjiang Military Command, No.950 Hospital of PLA, Yecheng, Xinjiang Autonomous Region, 844900, China

关键词:
全基因组测序塔吉克族高原适应单核苷酸变异拷贝数变异
Keywords:
whole genome sequencing Tajikhigh altitude adaption single nucleotide variant copy number variation  
分类号:
R339.54; R39433; R394.5
文献标志码:
A
摘要:

目的 通过对1例中国塔吉克族人的全基因组重测序分析,探讨塔吉克族人的遗传特征和高原适应之间的关系。方法 选取1例健康的中国塔吉克族成年男性(编号为T153),提取全血DNA后进行全基因组测序和线粒体DNA全长序列比对分析。结果 在线粒体DNA全长序列分析中发现,T153在线粒体DNA系统进化上的单倍群分型属于K1a12。本次全基因组测序深度为32.17×,通过与hg38千人基因组数据库进行序列比对,共发现了3 351 535个单核苷酸变异(single nucleotide variant,SNV),845 638个小的缺失插入(insertiondeletion,INDEL),7 829个染色体结构变异(structure variation,SV),63 397个拷贝数变异(copy number variation,CNV)。在高原遗传适应相关基因EGLN1和EPAS1的SNV分析中发现,T153EGLN1基因位点rs479200和rs480902的基因型分别是T和C,EPAS1基因位点rs6756667的基因型是G,而由高原原发性高血压相关基因ROCK2的多态性位点rs978906、rs6753921、rs10495582和rs2230774组成的基因单倍型为GAGA,这些均是高原遗传适应不良的影响因素。同时还发现与男性性激素水平变化相关基因DAZ、BPY2、CDY的CNV变化,均表现为拷贝数减少。结论DAZ的拷贝数降低是影响中国塔吉克族男性性激素水平变化的一个重要因素,而其SNV分布情况与既往研究发现的常见高原遗传适应位点无关,可能存在其他高原遗传适应机制

Abstract:

Objective To investigate the correlation between genetic characteristics of Chinese Tajik population and high altitude adaptation by sequencing and analyzing the whole genome of a healthy Chinese Tajik adult male. Methods A healthy Chinese Tajik adult male was subjected as participant (named as T153) in this study. His whole blood DNA was extracted for the mitochondrial DNA, and whole genome sequencing and analysis were used to analyze. ResultsIn the analysis of the complete nucleotide sequence of the mitochondrial genome, we found that the haplotype of mitochondrial DNA phylogeny of the Tajik male belonged to K1a12. The genome sequencing depth was 32.17×, sequence alignment was with the hg38 human genome database. There were 3 351 535 single nucleotide variant (SNV), 8 456 338 insertiondeletion (INDEL), 7 829 structure variation (SV) and 63 397 copy number variation (CNV) in total. In the analysis on the SNV of genes EGLN1 and EPAS1 (they are related to high altitude genetic adaptation in Tibetan), the results showed that the genotypes of polymorphic loci rs479200 and rs480902 of gene EGLN1 were T and C, respectively, and the loci rs6756667 genotype of gene EPAS1 was G. The polymorphic loci rs978906, rs6753921, rs10495582 and rs2230774 of gene ROCK2 (related with high altitude essential hypertension) formed the gene haplotype GAGA, which all were the genetic factors that were involved in poor acclimatization at high altitude. What’s more, some CNV changes, as copy number reduction, were found in genes DAZ, BPY2 and CDY (related to changes in male sex hormone levels). ConclusionThe decrease of copy number of DAZ may be an important factor affecting the change of male sex hormone levels in Chinese Tajik. However, there was no correlation between SNV distribution of this male and common high altitude genetic adaptation sites found in previous studies. There may be other mechanisms of genetic adaptation to high altitude.

 

参考文献/References:

[1]李晓明,杨莹,彭辉,等.全基因组测序在医学应用进展[J].基因组学与应用生物学,2015,34(5):1071-1075.DOI:10.13417/j.gab.034.001071.
LIX M,YANG Y,PENG H,et al. Whole genome sequencing progress in medical application[J]. Genomics Appl Biol,2015,34(5):1071-1075.DOI:10.13417/j.gab.034.001071.
[2]高亮,张西洲,朱光辉,等.160例塔吉克族高原世居人群慢性高原病患病率调查[J]. 西南国防医药,2015,25(4):462-463.DOI: 10.3969/j.issn.10040188.2015.04.050.
GAO L,ZHANG X Z,ZHU G H, et al.Investigation on the prevalence of chronic mountainsickness in 160 permanent high altitude natives of Chinese Tajik population[J]. Med J Nat Defend Force Southwest China,2015,25(4):462-463.DOI: 10.3969/j.issn.1004-0188.2015.04.050.
[3]朱伟梁, 沙热甫拉孜·卡达木, 局马巴依·夏古力, 等.200例帕米尔高原地区塔吉克族人高血压发病情况分析与治疗[J].中国医学工程, 2015, 23(3):71-72.
ZHU W L, KDAMU S, XIAGULI J,et al.Analysis and treatment of 200 Tajik hypertensive patients in Pamirs[J].China Med Eng,2015,23(3):71-72.
[4]玛依拉·卡米力江, 张德莲, 周玲, 等.塔什库尔干县塔吉克族 50 岁及以上中老年人群高血压流行病学调查[J].新疆医学,2018,48(4):357-359.
KMILIJIANG M, ZHANG D L, ZHOU L,et al. Epidemiological survey of hypertension in the middle age and elderly people among the Tajik nationality living in Tashkurghan[J]. Xinjiang Med J, 2018, 48(4): 357-359.
[5]刘阳,黄岚.高原环境对动脉血压影响的研究进展[J].医学综述,2014,20(6):963-966.
LIU Y, HUANG L. Effects of highaltitude hypoxia on arterial blood pressure[J]. Med Recapitulate, 2014, 20(6): 963-966.DOI:10.3969 /j.issn.10062084.2014.06.002.
[6]高亮,刘燕,李彬,等.帕米尔高原世居塔吉克族男性性激素水平分析[J]. 国际检验医学杂志,2018,39(5):615-617.DOI: 10.3969/j.issn.1673-4130.2018.05.028.
GAO L, LIU Y, LI B,et al.Analysis of male sex hormone level in permanent native Tajik in Pamirs[J]. Int J Lab Med,2018,39(5):615-617.DOI: 10.3969/j.issn.1673-4130.2018.05.028.
[7]JIANG C H, CUI J H, LIU F Y, et al. Mitochondrial DNA 10609T promotes hypoxia-induced increase of intracellular ROS and is a risk factor of high altitude polycythemia[J]. PLoS ONE,2014,9(1): e87775. DOI:10.1371/journal.pone.0087775.
[8]ELHEFNAWI M, JEON S, BHAK Y, et al. Whole genome sequencing and bioinformatics analysis of two Egyptian genomes[J]. Gene, 2018,668:129-134.DOI:10.1016/j.gene.2018.05.048.
[9]MARTIN M. Cutadapt removes adapter sequences from highthroughput sequencing reads[J]. EMBnetJ, 2011, 17(1) : 10-12.DOI:10.14806/ej.17.1.200.
[10]LI H. DURBIN R. Fast and accurate short read alignment with BurrowsWheeler transform[J].Bioinformatics, 2009,25(14):1754-1760.DOI: 10.1093/bioinformatics/btp324.
[11]何海金,张瑶,刘丽军,等.人类起源与进化的高原适应性遗传因素[J].国外医学(医学地理分册), 2017, 38(1): 97-100. DOI:10.3969/j.issn.1001-8883.2017.01.026.
HE H J, ZHANG Y, LIU L J, et al. Genetics of human origin and evolution: high-altitude adaptation[J].Foreign Med Sci(Section  Medgeogr), 2017,38(1):97-100.DOI:10.3969/j.issn.1001-8883.2017.01.026.
[12] ZHANG Y B, LI X, ZHANG F, et al. A preliminary study of copy number variation in Tibetans[J]. PLoS ONE,2012,7(7): e41768.DOI:10.1371/journal.pone.0041768.
[13]陈郁,高钰琪.基因组学研究在藏族高原适应遗传机制研究的实践与运用[J].国际遗传学杂志, 2012, 35(4) : 213-216. DOI:10.3760/enm.J.issn.1673-4386.2012.04.005.
CHEN Y, GAO Y Q. Practice and application of genomics research in genetic mechanism of high-altitude adaptation in Tibetan[J]. Int J Genet, 2012,35(4):213-216.DOI:10.3760/enm.J.issn.1673-4386.2012.04.005.
[14] 李小薇, 李翠莹.藏、汉族中遗传差异与高原低氧适应研究[J].中国输血杂志, 2017, 30(8):877-879. DOI:10.13303/j.cjbt.Issn.1004-549x.2017.08.008.
LI X W, LI C Y. The correlation of genetic variation and highaltitude hypoxia adaption between Tibetans and Han populations[J]. Chin J Blood Transfus,2017,30(8):877-879.DOI:10.13303/j.cjbt.Issn.1004549x.2017.08.008.
[15] HUERTASNCHEZ E, JIN X, ASA N, et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA[J].Nature, 2014,512(7513):194-197. DOI:10.1038/nature13408.
[16]席焕久.藏族的高原适应——西藏藏族生物人类学研究回顾[J].人类学学报, 2013,32(3):247-255.DOI:10.16359/j.cnki.cn11-1963/q.2013.03.004.
XI H J. Adaptation to high altitude hypoxia environment in Tibetans: a priliminary review of the biological anthropology of Tibetan[J].Acta Anthropol Sin,2013,32(3):247-255.DOI:10.16359/j.cnki.cn11-1963/q.2013.03.004.
[17]蒋丽,殷维瑶,刘建,等.EPAS1基因rs6756667多态性与藏族运动员的有氧运动能力[J].中国组织工程研究,2016,20(20):2957-2963.DOI: 10.3969/j.issn.20954344.2016.20.010.
JIANG L, YIN W Y, LIU J,et al. EPAS1 gene rs6756667 polymorphism and aerobic exercise capacity of Tibetan athletes[J]. Chin J Tissue Eng Res,2016,20(20):2957-2963.DOI: 10.3969/j.issn.20954344.2016.20.010.
[18] 陈郁,蒋春华,罗勇军,等.EPAS1基因rs6756667及rs7583392多态性与汉族男性高原红细胞增多症的相关性研究[J].解放军医学杂志,2012,37(12):1120-1124.
CHEN Y, JIANG C H, LUO Y J,et al. Correlation of rs6756667 and rs7583392 polymorphism of EPAS1 with high altitude polycythemia in male Han population[J]. Med J Chin PLA, 2012,37(12):1120-1124.
[19]PANDEY P, MOHAMMAD G, SINGH Y, et al.Polymorphisms and haplotype of ROCK2 associate with high altitude essential hypertension in native high altitude Ladakhi Indian population: a preliminary study[J]. Clin Exp Hypertens, 2016,38(2): 238-244. DOI:10.3109/10641963.2015.1081231.
[20]章亮,苏志煕.位点致病性预测软件对错义突变的预测效用评估[J].基因组学与应用生物学,2016,35(8):1916-1925.DOI: 10.13417/j.gab.035.001916.
ZHANG L, SU Z X. Evaluation of mutation pathogenicity prediction softwares on missense variants[J]. Genomics Appl Biol, 2016, 35(8):1916-1925. DOI: 10.13417/j.gab.035.001916.
[21]杨元,肖翠英,张思仲,等.男性原发不育与DAZ基因家族部分拷贝缺失[J].中华医学遗传学杂志,2004,21(5):444-447.
YANG Y, XIAO C Y, ZHANG S Z,et al.Idiopathic male infertility and partial copy deletion of DAZ gene family[J]. Chin J Med Genetics,2004,21(5):444-447.
[22]ALI H S, BAIG M, RANA M F, et al.Relationship of serum and seminal plasma zinc levels and serum testosterone in oligospermic and azoospermic infertile men[J]. J Coll Physicians Surg Pak,2005,15(11):671-673.DOI:11.2005/JCPSP.671673.
 

更新日期/Last Update: 2019-04-05