[1]朱水涛,闵竞,王群波,等.DSCM支架结合兔滑膜干细胞体外构建组织工程髓核[J].第三军医大学学报,2019,41(01):71-76.
 ZHU Shuitao,MIN Jing,WANG Qunbo,et al.Construction of tissue engineering nucleus pulposus with decellularized stem cell matrix scaffolds and rabbit synovium-derived stem cells in vitro[J].J Third Mil Med Univ,2019,41(01):71-76.
点击复制

DSCM支架结合兔滑膜干细胞体外构建组织工程髓核(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第01期
页码:
71-76
栏目:
基础医学
出版日期:
2019-01-15

文章信息/Info

Title:
Construction of tissue engineering nucleus pulposus with decellularized stem cell matrix scaffolds and rabbit synovium-derived stem cells in vitro
作者:
朱水涛闵竞王群波郑华郭华
重庆医科大学附属永川医院骨科
Author(s):
ZHU Shuitao MIN Jing WANG Qunbo ZHENG Hua GUO

Department of Orthopedics, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China

关键词:
细胞外基质滑膜干细胞组织工程髓核
Keywords:
decellularized stem cell matrix synovial-derived stem cells tissue engineering nucleus pulpous
分类号:
R318.08; R322.72; R329.2
文献标志码:
A
摘要:

目的   评估体外构建组织工程髓核的可行性。方法   从成年新西兰大白兔体内提纯兔滑膜干细胞(synovium-derived stem cells, SDSCs),接种到预制备的脱细胞细胞外基质(decellularized stem cell matrix, DSCM)支架中。实验分为3组:分别为空白组(空白DSCM支架)、实验组(SDSCs-DSCM复合体)和对照组(正常兔髓核组织)。肉眼以及光镜下观察材料和细胞的形态特征,扫描电镜(SEM)观察各组内部结构和细胞粘附情况,HE染色观察各组细胞分布情况,荧光免疫组织化学染色观察细胞外Ⅱ型胶原(CollagenⅡ)、聚集蛋白聚糖(Aggrecan)蛋白表达情况,实时定量PCR(qRT-PCR)测定两组CollagenⅡ、Aggrecan相关基因的变化,压缩载荷检测各组抗压缩性能。结果    肉眼下,组织工程髓核形态接近正常髓核;SEM显示细胞在支架内部粘附、生长良好;HE染色表明,随时间的延长,实验组材料内部细胞的分布逐渐均匀;免疫组化显示CollagenⅡ、Aggrecan分泌量随时间递增;qRT-PCR测定结果提示:实验组CollagenⅡ、Aggrecan mRNA表达量随时间递增,但均低于正常对照组(P<0.05);支架的压缩载荷检测结果显示:在相同位移下,SDSCs-DSCM与正常髓核的压缩载荷差异无统计学意义。结论    采用DSCM支架复合SDSCs可在体外成功构建组织工程髓核。

Abstract:

Objective    To evaluate the feasibility of constructing tissue engineering nucleus pulposus in vitro. Methods    After synovial-derived stem cells (SDSCs) were isolated from adult New Zealand white rabbit and purified, the cells were seeded into the prefabricated scaffolds of decellularized stem cell matrix (DSCM). So , the experiment included 3 groups, blank group (blank DSCM scaffolds), experimental group (SDSCs-DSCM complex) and control group (normal rabbit nucleus pulpous). Gross observation and scanning electron microscopy (SEM) were performed to observe the morphology and internal structure of materials and adhesion of cells. Hematoxylin and eosin (HE) staining was used to observe the distribution of cells in each group, and immunofluorescence histochemical staining was also used to detect the expression of CollagenⅡ protein and Aggrecan. Meanwhile, their mRNA levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Compression loading test was used to detect the compressive properties of each group.  Results  Gross observation found that the obtained tissue engineering nucleus pulposus was close to normal nucleus pulpous in morphology. SEM showed that the cells were adhered and grew well on the inner surface of the scaffolds. HE staining displayed that the cells in the experimental group presented uniform distribution gradually with the elapse of time. Immunofluorescence histochemical staining and qRT-PCR indicated that the expression of CollagenⅡand Aggrecan at protein and mRNA levels were increased with time, and all above levels were significantly lower than those in the control group (P<0.05). The results of compression loading test showed that there was no statistical difference in compression load between the experience group and control group under the same displacement conditions.  Conclusion   DSCM scaffold combined with SDSCs can be successfully built into tissue engineering nucleus pulposus in vitro.

参考文献/References:

[1]GOLOB A L, WIPF J E. Low back pain[J]. Med Clin North Am, 2014,98(3):405-428.DOI:10.1016/j.mcna.2014.01.003.
[2]SHARMA A. The role of adipokines in intervertebral disc degeneration[J]. Med Sci (Basel), 2018,6(2):E34.DOI: 10.3390/medsci6020034.
[3]VERGROESEN P P, KINGMA I, EMANUEL K S, et al. Mechanics and biology in intervertebral disc degeneration: a vicious circle[J]. Osteoarthr Cartilage, 2015,23(7): 1057-1070. DOI:10.1016/j.joca.2015.03.028.
[4]ROSENBERG G J, YEE A J M, ERWIN W M. Bedside to bench and back to bedside: Translational implications of targeted intervertebral disc therapeutics[J]. J Orthop Translat, 2017, 10:18-27. DOI: 10.1016/j.jot.2017.03.008.
[5]HEIDER F C, MAYER H M, SIEPE C J. Lumbar disc replacement: update[J]. J Neurosurg Sci, 2015, 59(2): 169-180.
[6]李志敏,姜蓉.腰椎间盘突出症治疗进展[J].华南国防医学杂志,2014,28(9):940-941. DOI: 10.3969/j.issn.10092595.2014.09.039.
LI Z M, JIANG R. Treatment progress of lumbar disc herniation[J]. Mil Med J South China, 2014,28(9): 940-941. DOI:10.3969/j.issn.10092595.2014.09.039.
[7]CHU G, SHI C, WANG H, et al. Strategies for annulus fibrosus regeneration: from biological therapies to tissue engineering[J]. Front Bioeng Biotechnol, 2018,6:90. DOI: 10.3389/fbioe.2018.00090.
[8]尹孚力,邓国英,赵庆华. 组织工程椎间盘研究进展[J]. 国际骨科学杂志, 2017, 38(4): 255-258. DOI: 10.3969/j.issn.16737083.2017.04.012.
YIN F L, DENG G Y, ZHAO Q H.Research development of tissueengineered intervertebral disc[J].Int J Orthop, 2017, 38(4):255-258.DOI:10.3969/j.issn.16737083.2017.04.012.
[9]NAM S Y, RICLES L M, SUGGS L J, et al. Imaging strategies for tissue engineering applications[J]. Tissue Eng Part B Rev, 2015,21(1):88-102. DOI: 10.1089/ten.TEB. 2014.0180.
[10]PEI M, ZHANG Y, LI J, et al. Antioxidation of decellularized stem cell matrixpromotes human synoviumderived stem cellbased chondrogenesis[J]. Stem Cells Dev,2013,22(6):889-900. DOI: 10.1089/scd.2012.0495.
[11]董茂盛,王佃亮. 生物支架材料——组织工程连载之二[J]. 中国生物工程杂志,2014, 34(6):122-127. DOI: 10.13523/j.cb. 20140618.
DONG M S, WANG D L. Biological scaffold materials[J]. J Chin Biotechnol, 2014, 34(6): 122-127. DOI: 10.13523/j.cb.20140618.
[12]王佃亮. 种子细胞——组织工程连载之三[J]. 中国生物工程杂志, 2014, 34(7): 108-113. DOI: 10.13523/j.cb.20140717.
WANG D L. Seed cells[J]. J Chin Biotechnol, 2014, 34(7): 108-113. DOI:10.13523/j.cb.20140717.
[13]JONES B A, PEI M. Synoviumderived stem cells: a tissuespecific stem cell for cartilage engineering and regeneration[J]. Tissue Eng Part B Rev, 2012,18(4):301-311. DOI: 10.1089/ten.TEB.2012.0002.
[14]谭伟,吕海,周初松. 去细胞基质支架构建组织工程椎间盘:最为接近正常髓核三维结构[J]. 中国组织工程研究, 2015,19(8):1289-1294.DOI:10.3969/j.issn.2095-4344.
TAN W, LYU H, ZHOU C S. Acellular matrix scaffold for tissueengineered intervertebral disc which is closest to the normal threedimensional structure of the nucleus pulposus[J]. J Clin Rehabilitative Tissue Eng Res, 2015,19(8):1289-1294.DOI:10.3969/j.issn.2095-4344.
[15]HUANG Y C, HU Y, LI Z,et al. Biomaterials for intervertebral disc regeneration: current status and looming challenges[J]. J Tissue Eng Regen Med, 2018. [Epub ahead of print].DOI:10.1002/term.2750.
[16]BERTOLO A, MEHR M, AEBLI N, et al. Influence of different commercial scaffolds on the in vitro differentiation of human mesenchymal stem cells to nucleus pulposuslike cells[J]. Eur Spine J, 2012,21(Suppl 6):S826-S838. DOI: 10.1007/s00586-011-1975-3.
[17]MATSIKO A, GLEESON J P, O’BRIEN F J. Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition[J]. Tissue Eng Part A, 2015,21(3/4):486-497.DOI:10.1089/ten.TEA.2013.0545.

更新日期/Last Update: 2019-01-14