[1]杨佳丹,向荣凤,戴青,等.人参皂苷Rg3对模拟高原缺氧大鼠的抗疲劳效应和骨骼肌线粒体功能的影响[J].第三军医大学学报,2019,41(02):110-115.
 YANG Jiadan,XIANG Rongfeng,DAI Qing,et al.Effects of ginsenoside Rg3 on fatigue resistance and skeletal muscle mitochondrial function in rats exposed to a simulated altitude of 5 000 m[J].J Third Mil Med Univ,2019,41(02):110-115.
点击复制

人参皂苷Rg3对模拟高原缺氧大鼠的抗疲劳效应和骨骼肌线粒体功能的影响(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第02期
页码:
110-115
栏目:
基础医学
出版日期:
2019-01-30

文章信息/Info

Title:
Effects of ginsenoside Rg3 on fatigue resistance and skeletal muscle mitochondrial function in rats exposed to a simulated altitude of 5 000 m
作者:
杨佳丹 向荣凤戴青来小丹
重庆医科大学附属第一医院药学部;陆军军医大学(第三军医大学)第一附属医院药剂科
Author(s):
YANG Jiadan XIANG Rongfeng DAI Qing LAI Xiaodan

Department of Pharmacy, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016;  Department of Pharmacy, First Affiliated Hospital,  Army Medical University (Third Military Medical University), Chongqing, 400038, China

关键词:
人参皂苷Rg3抗疲劳高原缺氧骨骼肌线粒体
Keywords:
ginsenoside Rg3 fatigue resistance high altitude hypoxia skeletal muscle mitochondria
分类号:
R285.5; R322.74; R339.54
文献标志码:
A
摘要:

目的 观察人参皂苷Rg3在模拟高原环境下提高大鼠的抗疲劳能力和对骨骼肌线粒体功能的影响。方法40只大鼠按随机数字表法分成4组,每组10只,分为正常对照组、Rg3+正常对照组(NG+Rg3)、缺氧模型组(model group, MG)、Rg3+缺氧模型组(MG+Rg3)。MG组和MG+Rg3组在模拟海拔 5 000 m高度的低压舱中喂养,大鼠每日从模拟高原环境中取出1 h行Rg3灌胃,剂量为20 mg/(kg·d)。连续灌胃15 d后,观察大鼠在正常环境和模拟高原环境下力竭游泳时间。力竭游泳实验结束后30 min,腹主动脉采血并检测大鼠总胆固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)、乳酸脱氢酶(lactate dehydrogenase,LDH)、血糖(glucose, GLU)、血氨(blood ammonia,BA)和血尿素氮(blood urea nitrogen,BUN)的变化。同时迅速分离大鼠股四头肌,检测骨骼肌线粒体丙二醛(malondialdehyde, MDA)、锰超氧化物歧化酶(Mn-superoxide dismutase, Mn-SOD)以及呼吸链复合物Ⅲ、Ⅳ活性的变化。结果 Rg3显著延长正常环境和模拟高原环境下大鼠的力竭游泳时间(P<0.01);显著上调正常环境和模拟高原环境下大鼠血清TC、TG、LDH、GLU浓度(P<0.05,P<0.01)和骨骼肌线粒体Mn-SOD活性及骨骼肌线粒体呼吸链复合物Ⅲ、Ⅳ活性(P<0.01);显著下调模拟高原环境下大鼠的BUN含量和骨骼肌线粒体MDA含量(P<0.01)。结论 人参皂苷Rg3在模拟高原环境下可延长大鼠力竭游泳时间,改善疲劳相关的生化指标,提高骨骼肌线粒体对自由基的消除作用和供能效力。

Abstract:

Objective   To observe the effects of ginsenoside Rg3 (Rg3) in improving fatigue resistance and functionality of skeletal muscle mitochondria in rats at a simulated high altitude. Methods   Forty adult male SD rats were randomly divided into 4 groups (n=10), namely the normal group (NG), Rg3-treated normal group (NG+Rg3), model group (MG), and Rg3-treated model group (MG+Rg3). In the latter 2 groups, the rats were exposed to a stimulated altitude of 5 000 m in a hypobaric chamber, and on a daily basis, the rats were taken from the chamber for intragastric administration of 20 mg/kg Rg3 (completed in 1 h). After 15 d of treatment, forced swimming test was performed and 30 min later blood samples were collected from the abdominal aorta for testing the levels of total cholesterol (TC), plasma triglyceride (TG), lactate dehydrogenase (LDH), blood glucose (GLU), blood ammonia (BA) and blood urea nitrogen (BUN); The quadriceps were quickly isolated for detecting malondialdehyde (MDA), Mn-superoxide dismutase (Mn-SOD) and the activity of compound Ⅲ and Ⅳ in the respiratory chain. Results    Rg3 treatment significantly increased the swimming time (P<0.05 or 0.01) and serum levels of TC, TG, LDH and GLU (P<0.05 or 0.01) and enhanced Mn-SOD activity and mitochondrial respiratory chain complex Ⅲ and Ⅳ activities  (P<0.01) both in rats kept in normal conditions and in those exposed to the simulated high altitude. Rg3 also significantly decreased serum BUN level and MDA content in the skeletal muscle mitochondria in rats exposed to the simulated high altitude (P<0.01). Conclusion   Rg3 can extend forced swimming time, improve the biochemical indexes related to fatigue, and enhance free radical clearance and energy supply of skeletal muscle mitochondria of rats

参考文献/References:

[1]DOSEK A, OHNO H, ACS Z, et al. High altitude and oxidative stress[J]. Respir Physiol Neurobiol, 2007, 158(2/3): 128-131. DOI:10.1016/j.resp.2007.03.013. 
[2]HINGHOFERSZALKAY H. Intermittent hypoxic training: risks versus benefits[J]. Eur J Appl Physiol, 2010, 108(2): 417. DOI: 10.1007/s00421-009-1274-4. 
[3]PIALOUX V, MOUNIER R, ROCK E, et al. Effects of the ‘live hightrain low’ method on prooxidant/antioxidant balance on elite athletes[J]. Eur J Clin Nutr, 2009, 63(6): 756-762. DOI: 10.1038/ejcn.2008.30. 
[4]SHISHTAR E, SIEVENPIPER J L, DJEDOVIC V, et al. The effect of ginseng (the genus panax) on glycemic control: a systematic review and meta-analysis of randomized controlled clinical trials[J]. PLoS ONE, 2014, 9(9): e107391. DOI: 10.1371/journal.pone.0107391. 
[5]LEE C H, KIM J H. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases[J]. J Ginseng Res, 2014, 38(3): 161-166. DOI: 10.1016/j.jgr.2014.03.001. 
[6]KIM H J, KIM P, SHIN C Y. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system[J]. J Ginseng Res, 2013, 37(1): 8-29. DOI: 10.5142/jgr.2013.37.8.
[7]周思敏, 张钢, 田怀军, 等. 银杏叶片对模拟高原暴露小鼠抗疲劳作用的实验研究[J]. 西南国防医药, 2011, 21(1): 1-3.
ZHOU S M, ZHANG G,TIAN H J, et al. Empirical study of antifatigue effects of Ginkgo Tablet on mice exposed to a simulated altitude of 5 000 m[J]. Med J Nat Defend Forces Southwest China, 2011, 21(1): 1-3.
[8] 田怀军, 罗红. 高原军队卫生学[M]. 北京: 人民卫生出版社, 2006.
TIAN H J, LUO H. Altitude military hygiene[M]. Beijing: People’s Medical Publishing House, 2006.
[9]XU Y, ZHANG P, WANG C, et al. Effect of ginsenoside Rg3 on tyrosine hydroxylase and related mechanisms in the forced swimming-induced fatigue rats[J]. J Ethnopharmacol, 2013, 150(1): 138-147. DOI: 10.1016/j.jep.2013.08.016.
[10]JUNG K, KIM  I H, HAN D. Effect of medicinal plant extracts on forced swimming capacity in mice[J]. J Ethnopharmacol, 2004, 93(1): 75-81. DOI: 10.1016/j.jep.2004.03.022. 
[11]KANG K S, YAMABE N, KIM H Y, et al. Effects of heatprocessed ginseng and its active component ginsenoside 20(S)Rg3 on the progression of renal damage and dysfunction in type 2 diabetic Otsuka LongEvans Tokushima Fatty rats[J]. Biol Pharm Bull, 2010, 33(6): 1077-1081. DOI: 10.1248/bpb.33.1077.
[12]HE B, CHEN P, XIE Y, et al. 20(R)ginsenoside Rg3 protects SHSY5Y cells against apoptosis induced by oxygen and glucose deprivation/reperfusion[J]. Bioorg Med Chem Lett, 2017, 27(16): 3867-3871. DOI: 10.1016/j.bmcl.2017.06.045. 
[13]MANNAA F, ABDELWAHHAB M A, AHMED H H, et al. Protective role of Panax ginseng extract standardized with ginsenoside Rg3 against acrylamide-induced neurotoxicity in rats[J]. J Appl Toxicol, 2006, 26(3): 198-206. DOI: 10.1002/jat.1128.
[14]韩培涛, 李晓莉, 钱平, 等. 中链甘油三酯抗疲劳作用及其机制研究[J]. 中国油脂, 2018, 43(1): 56-60.
HAN P T, LI X L, QIAN P, et al.Antifatigue effect of medium chain triglycerides and its mechanism[J]. Chin Oils Fats, 2018, 43(1): 56-60.
[15]YANGI B, CENGIZ USTUNER M, DINCER M, et al. Propolis protects endotoxin induced acute lung and liver inflammation through attenuating inflammatory responses and oxidative stress[J]. J Med Food, 2018, 43(1): 56-60. DOI: 10.1089/jmf.2017.0151. 
[16]GUTIERREZ E L, RAMOS W, SEMINARIOVIDAL L, et al. Oxidative stress in patients with endemic pemphigus foliaceus and healthy subjects with anti-desmoglein 1 antibodies[J]. An Bras Dermatol, 2018, 93(2): 212-215. DOI: 10.1590/abd1806-4841.20186211. 
[17]EUBEL H, J NSCH L, BRAUN H P. New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complexⅡ[J]. Plant Physiol, 2003, 133(1): 274-286. DOI: 10.1104/pp.103.024620.

更新日期/Last Update: 2019-01-22