[1]陈鸿,段振馨,陈凤,等.七氟醚预处理在二尖瓣置换手术的心肌保护作用:一项随机对照研究及lncRNA分析[J].第三军医大学学报,2018,40(12):1091-1097.
 CHEN Hong,DUAN Zhenxin,CHEN Feng,et al.Cardiaoprotective effect of sevoflurane preconditioning in patients undergoing mitral replacement surgery: a randomized controlled trial with lncRNA analysis[J].J Third Mil Med Univ,2018,40(12):1091-1097.
点击复制

七氟醚预处理在二尖瓣置换手术的心肌保护作用:一项随机对照研究及lncRNA分析(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第12期
页码:
1091-1097
栏目:
临床医学
出版日期:
2018-06-30

文章信息/Info

Title:
Cardiaoprotective effect of sevoflurane preconditioning in patients undergoing mitral replacement surgery: a randomized controlled trial with lncRNA analysis
作者:
陈鸿段振馨陈凤段光友陈芳钟河江杜智勇李洪
陆军军医大学(第三军医大学)第二附属医院麻醉科
Author(s):
CHEN Hong DUAN Zhenxin CHEN Feng DUAN Guangyou CHEN Fang ZHONG Hejiang DU Zhiyong LI Hong

Department of Anesthesiology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China

关键词:
Keywords:
sevoflurane mitral valve replacement cardioprotection long noncoding RNA
分类号:
R394.3;R654.2;R971.2
文献标志码:
A
摘要:

目的探讨七氟醚(sevoflurane)预处理对体外循环下行二尖瓣膜置换患者的心脏保护作用及其机制。方法纳入我院心脏外科2017年5-11月收治的40例接受二尖瓣置换手术的患者(17例男性和23例女性),平均年龄48岁,BMI:(22.7±2.6) kg/m2。根据随机数字表法将患者分为七氟醚预处理(SEV)组和对照(CON)组(n=20),SEV组患者体外循环前接受七氟醚持续吸入维持麻醉,而CON组采用丙泊酚维持麻醉。采集术前、术后2 、24 h血液,检测cTnI浓度;心脏彩超评估术前、术后24 h左室缩短分数和射血分数,记录ICU停留时间及住院时间;分别在体外循环开始前取得两组患者取心房肌标本(n=5),进行lncRNA测序和分析。结果SEV组患者:术后2 h[0.58(0.33,0.90)ng/mL vs 1.06(0.55、2.16)ng/mL,P<0.05]和24 h[0.66(0.38、1.02)ng/mL vs 1.09(0.72、1.54)ng/mL,P<0.05]的cTnI浓度均显著低于CON组;术后24 h左室缩短分数值[(39.8±3.3)% vs(33.9±2.8)%,P<0.05)和左室射血分数[(70.5±4.0)%  vs (62.7±4.2)%,P<0.05]显著高于CON组;ICU停留时间[(68±18)h vs(83±26)h,P<0.05]显著短于CON组。两组患者的住院时间差异无统计学意义(P>0.05)。lncRNA分析出73个上调和95个下调基因,结果提示心肌细胞凋亡相关的lncRNA通路可能参与七氟醚心脏保护。结论体外循环前七氟醚预处理对行二尖瓣置换手术的患者具有早期心肌保护作用;心肌细胞凋亡相关lncRNA通路可能是七氟醚预处理心肌保护的潜在作用靶点。

Abstract:
ObjectiveTo investigate the cardioprotective effects of sevoflurane preconditioning in patients undergoing mitral valve replacement under cardiopulmonary bypass and explore the underlying mechanisms by analyzing the expression profile of long noncoding RNAs (lncRNAs) in human cardiac tissue. MethodsThis randomized controlled trial included a total of 40 patients [17 male and 23 female patients with a mean age of 48 years (median, 49 years) and a mean body mass index of 22.7±2.6 kg/m2] undergoing mitral valve replacement under cardiopulmonary bypass between May and November 2017. The patients were randomized to undergo mitral valve replacement with sevoflurane preconditioning before cardiopulmonary bypass (SEV group, n=20) or without sevoflurane preconditioning (control group, n=20). Serum levels of cardiac troponin I (cTnI) was tested before and at 2 h and 24 h after surgery, and the left ventricular fractional shortening and ejection fraction were determined by cardiac ultrasonography before and at 24 h after surgery. The length of postoperative ICU stay and length of hospital stay of the patients were recorded. For 5 patients from each group, RNAseq analysis was performed using the left atrial myocardial specimens collected during the surgery. ResultsCompared with those in the control group, the patients in SEV group had significantly lower serum levels of cTnI at 2 h [1.06 (0.55, 2.16) vs 0.58 (0.33, 0.90) ng/mL, P<0.05] and at 24 h after the surgery [1.09 (0.72, 1.54) vs 0.66 (0.38, 1.02) ng/mL, P<0.05]. At 24 h after the surgery, the patients in SEV group showed significantly higher values of both fractional shortening [(39.8±3.3)% vs (33.9±2.8)%, P<0.05] and ejection fraction [(70.5±4.0)% vs (62.7±4.2)%, P<0.05] than those in the control group. The length of ICU stay was significantly shorter in SEV group than in the control group (68±18 vs 83±26 h, P<0.05), but the length of hospital stay did not differ significantly between the 2 groups (P>0.05). The results of lncRNA analysis identified 73 upregulated lncRNAs and 95 downregulated lncRNAs in the myocardial specimens, and KEGG analysis suggested possible associations of several apoptosisrelated pathways with the cardioprotective effects of sevoflurane preconditioning. ConclusionSevoflurane preconditioning before cardiopulmonary bypass can reduce myocardial injury early after mitral valve replacement, and thus can be an optimal anesthesia strategy for this operation. The lncRNA pathways in relation with apoptosis may provide new insights into the mechanism of cardioprotective effects of sevoflurane preconditioning.
 

参考文献/References:

[1]VAN DER MERWE J, CASSELMAN F. Mitral valve replacementcurrent and future perspectives[J]. Open J Cardiovasc Surg,  2017,  9: 1179065217719023. DOI: 10.1177/117906 5217719023. 
[2]THONGHONG T, DE BACKER O, SONDERGAARD L. Comprehensive update on the new indications for transcatheter aortic valve replacement in the latest 2017 European guidelines for the management of valvular heart disease[J]. Open Heart, 2018, 5(1): e000753. DOI: 10.1136/openhrt2017000753.
[3]ZAUGG M, SCHAUB M C, FOEX P. Myocardial injury and its prevention in the perioperative setting[J]. Br J Anaesth,  2004,  93(1): 21-33. DOI: 10.1093/bja/aeh150.
[4]LEMOINE S, ZHU L, GéRARD J L, et al.  Sevofluraneinduced cardioprotection in coronary artery bypass graft surgery:  randomised trial with clinical and exvivo endpoints[J]. Anaesth Crit Care Pain Med,  2017,  [Epub ahead of print]. DOI:  10.1016/j.accpm.2017.05.009.
[5]LU Y, WANG L, LIU N, et al. Sevoflurane preconditioning in onpump coronary artery bypass grafting:  a metaanalysis of randomized controlled trials[J]. J Anesth, 2016, 30(6): 977-986. DOI: 10.1007/s005400162226x.
[6]KUNST G, KLEIN A A. Perioperative anaesthetic myocardial preconditioning and protection—cellular mechanisms and clinical relevance in cardiac anaesthesia[J]. Anaesthesia, 2015, 70(4): 467-482. DOI: 10.1111/anae.12975.
[7]LEMOINE S, TRITAPEPE L, HANOUZ J L, et al. The mechanisms of cardioprotective effects of desflurane and sevoflurane at the  time of reperfusion:  anaesthetic postconditioning potentially translatable to humans? [J]. Br J Anaesth,  2016,  116(4): 456-475. DOI: 10.1093/bja/aev451.
[8]BOON R A, JAé N, HOLDT L, et al. Long noncoding RNAs:  from clinical genetics to therapeutic targets? [J]. J Am Coll Cardiol,  2016,  67: 1214-1226. DOI: 10.1016/j.jacc.2015.12.051.
[9]ZHAO Z H, HAO W, MENG Q T, et al. Long noncoding RNA MALAT1 functions as a mediator in cardioprotective effects of fentanyl in myocardial ischemiareperfusion injury[J]. Cell Biol Int,  2017,  41(1): 62-70. DOI: 10.1002/cbin.10701.
[10]PIRIOU V,  MANTZ J,  GOLDFARB G, et al. Sevoflurane preconditioning at 1 MAC only provides limited protection in patients undergoing coronary artery bypass surgery:  a randomized bicentre trial[J]. Br J Anaesth,  2007,  99(5): 624-631. DOI: 10.1093/bja/aem264.
[11]BEIN B, RENNER J, CALIEBE D, et al. The effects of interrupted or continuous administration of sevoflurane on preconditioning before cardiopulmonary bypass in coronary artery surgery:  comparison with continuous propofol[J]. Anaesthesia,  2008,  63(10): 1046-1055. DOI: 10.1111/j.13652044.2008.05563.x.
[12]FELLAHI J L, HANOUZ J L, GUé X, et al. Kinetic analysis of cardiac troponin I release is no more accurate than a single  24h measurement in predicting inhospital outcome after cardiac surgery[J]. Eur J Anaesthesiol,  2008,  25(6): 490-497. DOI: 10.1017/S0265021508003827.
[13]EICHLER K, URNER M, TWERENBOLD C, et al.  Economic evaluation of pharmacologic pre and postconditioning with sevoflurane compared with total intravenous anesthesia in liver surgery:  a cost analysis[J]. Anesth Analg,  2017,  124(3): 925-933. DOI: 10.1213/ANE.0000000000001814.
[14]LIU C, SHEN Z, LIU Y, et al. Sevoflurane protects against intestinal ischemiareperfusion injury partly by phosphatidylinositol 3 kinases/Akt pathway in rats[J]. Surgery, 2015, 157(5): 924-933. DOI: 10.1016/j.surg.2014.12.013.
[15]MOHAMED A S, HANAFI N I, SHEIKH ABDUL KADIR S H, et al. Ursodeoxycholic acid protects cardiomyocytes against cobalt chloride induced hypoxia by regulating transcriptional mediator of cells stress hypoxia inducible factor 1alpha and p53 protein[J]. Cell Biochem Funct,  2017,  35(7): 453-463. DOI: 10.1002/cbf.3303.

更新日期/Last Update: 2018-07-03