[1]吴玉云,杨泓莹,覃勇,等.蛋白精氨酸N-甲基转移酶4上调八聚体结合转录因子4表达促进胃癌细胞的干性[J].第三军医大学学报,2018,40(08):679-685.
 WU Yuyun,YANG Hongying,QIN Yong,et al.Protein arginine N-methyltransferase 4 up-regulates Oct4 expression and promotes stemness of gastric cancer cells[J].J Third Mil Med Univ,2018,40(08):679-685.
点击复制

蛋白精氨酸N-甲基转移酶4上调八聚体结合转录因子4表达促进胃癌细胞的干性(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第08期
页码:
679-685
栏目:
基础医学
出版日期:
2018-04-30

文章信息/Info

Title:
Protein arginine N-methyltransferase 4 up-regulates Oct4 expression and promotes stemness of gastric cancer cells
作者:
吴玉云杨泓莹覃勇汪苏敏张亚丽刘胜伟杨仕明杨应斌
西南大学生命科学学院;陆军军医大学(第三军医大学)第二附属医院消化内科;重庆医科大学附属永川医院药学部
Author(s):
WU Yuyun YANG Hongying QIN Yong WANG Sumin ZHANG Yali LIU Shengwei YANG ShimingYANG Yingbin

College of Life Sciences, Southwest University, Chongqing, 400715; Department of Gastroenterology, Second Affiliated Hospital, Army Military Medical University(Third Military Medical University), Chongqing, 400037; Department of Pharmacy, Yongchuan Hospital Affiliated to Chongqing Medical University, Chongqing, 402160, China

关键词:
蛋白精氨酸N-甲基转移酶八聚体结合转录因子4肿瘤干细胞转录调控
Keywords:
protein arginine N-methyltransferase 4 octamer-binding transcription factor 4 cancer stem cells transcriptional regulation
分类号:
R345.5;R394.3;R735.2
文献标志码:
A
摘要:

目的     探讨蛋白精氨酸N-甲基转移酶(protein arginine N-methyltransferase,PRMTs)调控八聚体结合转录因子4(octamer-binding transcription factor4, Oct4)的表达及其对胃癌细胞“干性”的影响。方法     以 pcDNA3.1载体构建PRMT4过表达质粒,转染至人胃腺癌MKN45细胞;倒置相差显微镜下观察肿瘤细胞成球能力的变化;qRT-PCR和Western blot检测胃癌干细胞标志物CD44、Lgr5及“干性”维持分子Nanog、Oct4的改变;继而构建含Oct4基因启动子荧光素酶报告载体,分析PRMT4对Oct4启动子活性的影响;最后采用染色质免疫沉淀(chromatin immunoprecipitation, ChIP)实验证实PRMT4与Oct4基因启动子结合情况。结果MKN45细胞转染蛋白精氨酸N-甲基转移酶-4基因过表达载体后,形成肿瘤干细胞球的能力显著增强;随后qRT-PCR及Western blot检测结果显示胃癌干细胞标志物CD44、Lgr5的mRNA及蛋白水平上调;此外,过表达PRMT4可明显增加“干性”维持分子Oct4的mRNA及蛋白水平,而对Nanog则无明显影响;双荧光素酶实验结果显示,与对照组相比,PRMT4过表达组Oct4的启动子活性明显增强(P<0.05);染色质免疫共沉淀实验结果证实,PRMT4可与Oct4启动子结合。结论    PRMT4可结合至Oct4基因启动子上,通过增加启动子活性,从而促进Oct4转录及表达,进而增强胃癌细胞的干性。

Abstract:

Objective     To investigate the effect of protein arginine N-methyltransferase 4 (PRMT4) on the expression of octamer-binding transcription factor 4 (Oct4) and on the stemness of gastric cancer cells. Methods    A eukaryotic plasmid expressing PRMT4 was constructed and transfected into human gastric cancer cell line MKN45, and the in vitro tumor sphere formation was observed. qRT-PCR and Western blotting were performed to examine the expressions of gastric cancer stem cell surface markers including CD44, Lgr5, Nanog and Oct4 in the transfected cells. Dual luciferase reporter assay was used to test the activity of the Oct4 promoter, and chromatin immunoprecipitation (ChIP) was employed to demonstrate the enrichment of PRMT4 in Oct4 gene promoter. Results    MKN45 cells transfected with the PRMT4 plasmid showed enhanced ability of tumor sphere formation. qRT-PCR and Western blotting showed that the expression levels of CD44 and Lgr5 were significantly up-regulated in the cells after PRMT4 over-expression, which also resulted in increased expression of Oct4 at both mRNA and protein levels without obviously affecting Nanog expression. Dual luciferase reporter assay demonstrated that PRMT4 enhanced the activity of Oct4 promoter, and the results of ChIP confirmed the binding of PRMT4 to Oct4 promoter region. Conclusion    PRMT4 interacts with the promoter region of Oct4 gene to enhance Oct4 expression, thereby promoting the stemlike traits of gastric cancer cells

参考文献/References:

[1]CUNNINGHAM D, STARLING N, RAO S, et al. Capecitabine and oxaliplatin for advanced esophagogastric cancer[J]. N Engl J Med, 2008, 358(1): 36-46. DOI: 10.1056/NEJMoa073149.
[2]TAKAISHI S, OKUMURA T, WANG T C. Gastric cancer stem cells[J]. J Clin Oncol, 2008, 26(17): 2876-2882. DOI: 10.1200/JCO.2007.15.2603.
[3]LARSEN S C, SYLVESTERSEN K B, MUND A, et al. Proteomewide analysis of arginine monomethylation reveals widespread occurrence in human cells [J]. Sci Signal, 2016, 9(443): rs9.DOI: 10.1126/scisignal.aaf7329.
[4]SANCHEZ G, BONDYCHORNEY E, LAFRAMBOISE J, et al. A novel role for CARM1 in promoting nonsensemediated mRNA decay: potential implications for spinal muscular atrophy[J]. Nucleic Acids Res, 2016, 44(6): 2661-2676. DOI: 10.1093/nar/gkv1334.
[5]JACQUES S L, AQUINO K P, GUREASKO J, et al. CARM1 preferentially methylates H3R17 over H3R26 through a random kinetic mechanism[J]. Biochemistry, 2016, 55(11): 1635-1644. DOI: 10.1021/acs.biochem. 5b01071.
[6]MIRANDA T B, KHUSIAL P, COOK J R, et al. Spliceosome sm proteins D1, D3, and B/B’ are asymmetrically dimethylated at arginine residues in the nucleus[J]. Biochem Biophys Res Commun, 2004, 323(2): 382-387. DOI: 10.1016/j.bbrc.2004.08.107.
[7]KRAUSE C D, YANG Z H, KIM Y S, et al. Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential[J]. Pharmacol Ther, 2007, 113(1): 50-87. DOI: 10.1016/j.pharmthera.2006. 06.007.
[8]WU Z, YANG M, LIU H, et al. Role of nuclear receptor coactivator 3 (Ncoa3) in pluripotency maintenance[J]. J Biol Chem, 2012, 287(45): 38295-38304. DOI: 10.1074/jbc. M112.373092.
[9]PFEIFFER M J, SIATKOWSKI M, PAUDEL Y, et al. Proteomic analysis of mouse oocytes reveals 28 candidate factors of the “reprogrammome”[J]. J Proteome Res, 2011, 10(5): 2140-2153. DOI: 10.1021/pr100706k.
[10]BALDWIN R M, HAGHANDISH N, DANESHMAND M, et al. Protein arginine methyltransferase 7 promotes breast cancer cell invasion through the induction of MMP9 expression[J]. Oncotarget, 2015, 6(5): 3013-3032. DOI: 10. 18632/oncotarget.3072.
[11]SHLENSKY D, MIRRIELEES J A, ZHAO Z, et al. Correction: differential CARM1 isoform expression in subcellular compartments and among malignant and benign breast tumors[J]. PLoS ONE, 2015, 10(6): e0131955. DOI: 10.1371/journal.pone.0131955.
[12]BLANC R S, RICHARD S. Arginine methylation: the coming of age[J]. Mol Cell, 2017, 65(1): 824. DOI: 10. 1016/j.molcel.2016.11.003.
[13]LEE H E, KIM J H, KIM Y J, et al. An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer [J]. Br J Cancer, 2011, 104(11): 1730-1738. DOI: 10.1038/bjc.2011.159.
[14]VERMEULEN L, DE SOUSA E MELO F, RICHEL D J, et al. The developing cancer stemcell model: clinical challenges and opportunities[J]. Lancet Oncol, 2012, 13(2): e83-e89. DOI: 10.1016/S14702045(11)702571.
[15]WILLIAMS K, MOTIANI K, GIRIDHAR P V, et al. CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches[J]. Exp Biol Med (Maywood), 2013, 238(3): 324-338. DOI: 10.1177/1535370213480714.
[16]LIU L, ZHANG J, FANG C, et al. OCT4 mediates FSHinduced epithelialmesenchymal transition and invasion through the ERK1/2 signaling pathway in epithelial ovarian cancer[J]. Biochem Biophys Res Commun, 2015, 461(3): 525-532. DOI: 10.1016/j.bbrc. 2015.04.061.
[17]YU J, VODYANIK M A, SMUGAOTTO K, et al. Induced pluripotent stem cell lines derived from human somatic cells [J]. Science, 2007, 318(5858): 1917-1920.DOI: 10.1126/ science.1151526.
[18]TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663-676. DOI: 10.1016/j.cell.2006.07.024.  
[19]TAI M H, CHANG C C, KIUPEL M, et al. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis[J]. Carcinogenesis, 2005, 26(2): 495-502. DOI: 10.1093/carcin/bgh321.
[20]YU H, FANG D, KUMAR S M, et al. Isolation of a novel population of multipotent adult stem cells from human hair follicles[J]. Am J Pathol, 2006, 168(6): 1879-1888. DOI: 10. 2353/ajpath.2006.051170.
[21]HU T, LIU S, BREITER D R, et al. Octamer 4 small interfering RNA results in cancer stem celllike cell apoptosis[J]. Cancer Res, 2008, 68(16): 6533-6540. DOI: 10.1158/00085472.CAN076642.
[22]CHEN Y C, HSU H S, CHEN Y W, et al. Oct4 expression maintained cancer stemlike properties in lung cancerderived CD133positive cells[J]. PLoS ONE, 2008, 3(7): e2637. DOI: 10.1371/journal.pone.0002637.
[23]VILLODRE E S, KIPPER F C, PEREIRA M B, et al. Roles of OCT4 in tumorigenesis, cancer therapy resistance and prognosis[J]. Cancer Treat Rev, 2016, 51: 1-9. DOI: 10.1016/j.ctrv.2016.10.003.
[24]FEINBERG A P, KOLDOBSKIY M A, G ND R A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression[J]. Nat Rev Genet, 2016, 17(5): 284-299. DOI: 10.1038/nrg.2016.13.
[25]BEDFORD M T, RICHARD S. Arginine methylation an emerging regulator of protein function[J]. Mol Cell, 2005, 18(3): 263-272. DOI: 10.1016/j.molcel.2005.04.003.
[26]WU Q, BRUCE A W, JEDRUSIK A, et al. CARM1 is required in embryonic stem cells to maintain pluripotency and resist differentiation[J]. Stem Cells, 2009, 27(11): 2637-2645. DOI: 10.1002/stem.131.
[27]BEDFORD M T, CLARKE S G. Protein arginine methylation in mammals: who, what, and why[J]. Mol Cell, 2009, 33(1): 1-13. DOI: 10.1016/j.molcel.2008.12.013.
[28]TOMIOKA M, NISHIMOTO M, MIYAGI S, et al. Identification of Sox2 regulatory region which is under the control of Oct3/4Sox2 complex [J]. Nucleic Acids Res, 2002, 30(14): 3202-3213.
[29]ZHAO H Y, ZHANG Y J, DAI H, et al. CARM1 mediates modulation of Sox2[J]. PLoS ONE, 2011, 6(10): e27026. DOI: 10.1371/journal.pone.0027026.
[30]BOYER L A, LEE T I, COLE M F, et al. Core transcriptional regulatory circuitry in human embryonic stem cells[J]. Cell, 2005, 122(6): 947-956. DOI: 10.1016/j. cell.2005.08.020.
[31]方兴贵. CD44在肿瘤干细胞的研究进展[J]. 医学综述, 2012, 18(20): 3385-3387.
FANG X G. Research progress of cd44 in tumor stem cells[J]. Med Recapitulate, 2012, 18(20): 3385-3387.
[32]牛磊, 郗洪庆, 陈凛. Lgr5Wnt/βcatenin信号通路与胃癌干细胞的研究进展[J]. 解放军医学院学报, 2014 , 35(12): 1268-1272.
NIU L, XI H Q, CHEN L.Lgr5Wnt/βcatenin signal pathway and gastric cancer stem cells[J]. Acad J Chin PLA Med Sch, 2014, 35(12): 1268-1272.

更新日期/Last Update: 2018-04-28