[1]袁靳闲,刘熙,欧书,等.棘突形态及功能重塑在癫痫形成中的研究[J].第三军医大学学报,2018,40(08):686-692.
 YUAN Jinxian,LIU Xi,OU Shu,et al.Changes of dendritic spine morphology and functions in the development of epilepsy in rats[J].J Third Mil Med Univ,2018,40(08):686-692.
点击复制

棘突形态及功能重塑在癫痫形成中的研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第08期
页码:
686-692
栏目:
基础医学
出版日期:
2018-04-30

文章信息/Info

Title:
Changes of dendritic spine morphology and functions in the development of epilepsy in rats
作者:
袁靳闲刘熙欧书许韬陈阳美
重庆医科大学附属第二医院神经内科
Author(s):
YUAN Jinxian LIU Xi OU Shu XU Tao CHEN Yangmei

Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China

关键词:
癫痫棘突突触重塑
Keywords:
epilepsy dendritic spines synaptic remodeling
分类号:
R338.13;R363.21;R742.1
文献标志码:
A
摘要:

目的    研究癫痫形成过程中棘突形态、功能变化以及棘突重塑在癫痫形成过程中的可能作用。方法    ①20只SD大鼠随机数字表法分为癫痫组及对照组,建立锂-匹罗卡品慢性癫痫模型,高尔基染色观察大鼠海马齿状回棘突形态变化,qRT-PCR及Western blot检测海马PSD95及SYP表达变化。②选择SD胎鼠海马神经元进行原代培养,建立无镁癫痫模型。检测细胞内钙离子浓度及神经元棘突数量变化情况统计两者相关性。结果    ①与对照组相比,癫痫模型组大鼠齿状回(dentate gyrus, DG)区棘突平均密度增加,但正常功能棘突数量减少,PSD95及SYP表达增加(P<0.01)②癫痫组细胞内钙离子浓度增加(P<0.01),且与神经元棘突密度变化呈正相关(r=0.613,P<0.05)。结论    癫痫形成过程中突触重塑活跃。但形态及功能异常,为癫痫形成提供基础,可作为棘突重塑的重要标志。

Abstract:

Objective     To investigate the morphological and functional changes of dendritic spines during the development of epilepsy and explore the possible role of dendritic spine remodeling in epilepsy. Methods     Twenty SD rats were randomly divided into control group and epilepsy group, and in the latter group, rat models of chronic epilepsy were established by intraperitoneal injection of lithium and pilocarpine. The morphology of the dendritic spines of the neurons in the hippocampal dentate gyrus (DG) was observed using Golgi staining, and the changes in the expression levels of postsynaptic density protein 95 (PSD95) and synaptophysin (SYP) were detected using qRT-PCR and Western blotting. Hippocampal neurons were isolated from fetal SD rats for primary culture, and an epileptic cell model was established using magnesium-free medium. The changes in intracellular calcium concentration and the density of dendritic spines were assessed in the cells after modeling. Results     Compared with the control rats, the epileptic rats showed significantly increased mean density of dendritic spines in the DG neurons (P<0.05) with reduced mushroom-shaped spines (P<0.05); The expression of PSD95 and SYP in the hippocampus was significantly increased in the epileptic rats (P<0.05). In the hippocampal neuronal model of epilepsy, intracellular calcium concentration increased significantly after modeling compared with that in the control cells (P<0.01) and showed a significant positive correlation with the density of dendritic spines in the neurons (P<0.05). Conclusion     Synaptic remodeling is super-active during epilepsy with morphological and functional abnormalities of the synapses, which provides the pathological basis for epilepsy and serves as an important sign of dendritic spine remodeling.

参考文献/References:

[1]KUWAJIMA M, SPACEK J, HARRIS KM. Beyond counts and shapes: studying pathology of dendritic spines in the context of the surrounding neuropil through serial section electron microscopy[J]. Neuroscience, 2013, 251: 75-89. DOI: 10.1016/j.neuroscienc e.2012.04.061.
[2]JEANS A F, VAN HEUSDEN F C, AL-MUBARAK B, et al. Homeostatic presynaptic plasticity is specifically regulated by P/Qtype Ca2+ channels at mammalian hippocampal synapses[J]. Cell Reports, 2017, 21(2): 341-350. DOI:10.1016/ j.celrep. 2017.09.061.
[3]KANJHAN R, NOAKES P G, BELLINGHAM M C. Emerging roles of filopodia and dendritic spines in motoneuron plasticity during development and disease[J]. Neural Plasticity, 2016, 2016: 1-31. DOI: 10.1155/2016/3423267.
[4]SEBASTIAN V, ESTIL J B, CHEN D, et al. Acute physiological stress promotes clustering of synaptic markers and alters spine morphology in the hippocampus[J]. PLoS ONE, 2013, 8(10): e79077. DOI: 10.1371/journal.pone.0079077.
[5]XIE W, SONG YJ, LI D, et al. The suppression of epileptiform discharges in cultured hippocampal neurons is regulated via alterations in full-length tropomyosin-related kinase type B receptors signalling activity[J]. Eur J Neurosci, 2014, 40(3): 2564-2575. DOI: 10.1111/ejn.12620.
[6]EBRAHIMI S, OKABE S. Structural dynamics of dendritic spines: molecular composition, geometry and functional regulation[J]. Biochim Biophys Acta, 2014, 1838(10): 2391-2398. DOI: 10.1016/j.bbamem.2014.06.002.
[7]NISHIYAMA N, COLONNA J, SHEN E, et al. Long-term in vivo time-lapse imaging of synapse development and plasticity in the cerebellum[J]. J Neurophysiol, 2014, 111(1): 208-216. DOI: 10.1152/jn.00588.2013.
[8]CHEN J L, NEDIVI E. Neuronal structural remodeling: is it all about access[J]. Curr Opin Neurobiol, 2010, 20(5): 557-562. DOI: 10.1016/j.conb.2010.06.002.
[9]柴继侠, 王元元, 李徽徽, 等. 突触后致密蛋白95(PSD95)和突触小泡蛋白在神经元成熟过程中的分布[J]. 细胞与分子免疫学杂志, 2016, 32(12): 1619-1622.
CHAI J X, WANG Y Y, Li H H, et al. Distribution of postsynaptic density protein 95 (psd95) and synaptophysin during neuronal maturation[J]. Chin J Cell Mol Immunol, 2016, 32(12): 1619-1622.
[10]NAIR D, HOSY E, PETERSEN J D, et al. Super-Resolution Imaging Reveals That AMPA Receptors Inside Synapses Are Dynamically Organized in Nanodomains Regulated by PSD95[J]. J Neurosci, 2013, 33(32): 13204-13224. DOI: 10.1523/jneurosci.2381-12.2013.
[11]BUSTOS F J, VARELA-NALLAR L, CAMPOS M, et al. PSD95 suppresses dendritic arbor development in mature hippocampal neurons by occluding the clustering of NR2B-NMDA receptors[J]. PLoS ONE, 2014, 9(4): e94037. DOI: 10.1371/journal.pone.0094037.
[12]YI ES, OH S, LEE J K, et al. Chronic stress-induced dendritic reorganization and abundance of synaptosomal PKAdependent CPAMPA receptor in the basolateral amygdala in a mouse model of depression[J]. Biochem Biophys Res Commun, 2017, 486(3): 671-678. DOI:10.1016/ j.bbrc.2017.03.093.
[13]BELL J E S, SEIFERT J L, SHIMIZU E N, et al. Atraumatic spine distraction induces metabolic distress in spinal motor neurons[J]. J Neurotrauma, 2017, 34(12): 20342044. DOI:10.1089/neu.2016.4779.
[14]HIGLEY MJ, SABATINI BL. Calcium signaling in dendritic spines[J]. Cold Spring Harb Perspect Biol, 2012, 4(4): a005686. DOI: 10.1101/cshperspect.a005686.
[15]肖淳, 王文, 石全红, 等. STIM1在幼年和成年大鼠外伤性癫痫中的表达[J]. 第三军医大学学报, 2013, 35(14): 1493-1497.
XIAO C, WANG W, SHI Q H, et al. Expression of stim1 in young and adult rats with posttraumatic epilepsy[J]. J Thrid Mil Med Univ, 2013, 35(14): 1493-1497.
[16]CHEN X, ROCHEFORT N L, SAKMANN B, et al. Reactivation of the same synapses during spontaneous up states and sensory stimuli[J]. Cell Rep, 2013, 4(1): 31-39. DOI: 10.1016/ j.celrep.2013.05.042.
[17]HIGLEY M J, SABATINI B L. Calcium signaling in dendrites and spines: practical and functional considerations[J]. Neuron, 2008, 59(6): 902-913. DOI: 10.1016/ j.neuron.2008. 08.020.

更新日期/Last Update: 2018-04-28