Zhang Weiguo.Progress of advanced magnetic resonance imaging in evaluation of gliomas[J].J Third Mil Med Univ,2016,38(22):2383-2387.

磁共振成像技术临床应用进展——对脑胶质瘤评价的作用(/HTML )




Progress of advanced magnetic resonance imaging in evaluation of gliomas
Zhang Weiguo

Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China

gliomastumor biomarkerMRI functional MRI MR physiologic/metabolic-imaging

Conventional magnetic resonance imaging (MRI) sequences are largely nonspecific in the pathology they reveal, and provide a limited view of the complex morphological changes associated with gliomas. For the purpose of clinical application, advanced MR imaging promises to complement existing techniques by revealing more specific information on the changes of gliomas-relevant pathophysiology, such as cerebral microangiopathy and dysbolism. Moreover, genetic alterations in gliomas associated with unique phenotype signatures can be detected by advanced MRI. This relationship between MRI modalities and molecular features will facilitate diagnosis, patient stratification, and monitoring of treatment response. In this review, we outlined the current efforts to correlate advanced imaging findings with the genetic/histopathological development in gliomas, and discussed the challenges that were being encountered in this area afterwards.


[1]Goodenberger M L, Jenkins R B. Genetics of adult glioma[J]. Cancer Genetics, 2012, 205(12): 613-621. DOI: 10.1016/j.cancergen.2012.10.009
[2]Louis D N, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary[J]. Acta Neuropathologica, 2016, 131(6): 803-820. DOI: 10.1007/s00401016-1545-1
[3]Colen R R, Vangel M, Wang J, et al. Imaging genomic mapping of an invasive MRI phenotype predicts patient outcome and metabolic dysfunction: a TCGA glioma phenotype research group project[J]. BMC Med Genomics, 2014, 7(1): 1-9. DOI: 10.1186/1755-8794-7-30
[4]Yu Y, Lee D H, Peng S L, et al. Assessment of Glioma Response to Radiotherapy Using Multiple MRI Biomarkers with Manual and Semiautomated Segmentation Algorithms[J]. J Neuroimaging, 2016, [Epub ahead of print] . DOI: 10.1111/jon.12354
[5]Shen N, Zhao L, Jiang J, et al. Intravoxel incoherent motion diffusionweighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labeling for evaluation of tumor perfusion[J]. J Magn Reson Imaging, 2016, 44(3): 620-632. DOI: 10.1002/jmri.25191
[6]Burks J D, Bonney P A, Conner A K, et al. A method for safely resecting anterior butterfly gliomas: the surgical anatomy of the default mode network and the relevance of its preservation[J]. J Neurosurg, 2016: 1-17. DOI: 10.3171/2016.5.JNS153006
[7]黄杰, 李晓光, 康厚艺, 等. DSC-MRI和DCE-MRI定量分析在脑胶质瘤分级诊断中的应用[J]. 第三军医大学学报, 2015, 37(7): 672-677. DOI: 10.16016/j.1000-5404.201410173
[8]杜学松. 脑胶质瘤新生血管变化特征与动态对比增强磁共振成像实验研究[D]. 重庆: 第三军医大学, 2015.
[9]Whitmore R G , Krejza J, Kapoor G S, et al. Prediction of oligodendroglial tumor subtype and grade using perfusion weighted magnetic resonance imaging[J]. J Neurosurg, 2007, 107(3): 600-609. DOI: 10.3171/Jns07/09/0600
[10]Jain R, Poisson L, Narang J, et al. Correlation of Perfusion Parameters with Genes Related to Angiogenesis Regulation in Glioblastoma: A Feasibility Study[J]. Am J Neuroradiol, 2012, 33(7): 1343-1348. DOI: 10.3174/ajnr.A2956
[11]Rosen B R, Belliveau J W, Vevea J M, et al. Perfusion imaging with NMR contrast agents[J]. Magn Reson Med, 1990, 14(2): 249-265.
[12]Kang H Y, Xiao H L, Chen J H, et al. Comparison of the Effect of Vessel Size Imaging and Cerebral Blood Volume Derived from Perfusion MR Imaging on Glioma Grading[J]. Am J Neuroradiol, 2016, 37(1): 51-57. DOI: 10.3174/ajnr.A4477
[13]Sakaie K E, Shin W, Curtin K R, et al. Method for improving the accuracy of quantitative cerebral perfusion imaging[J]. J Magn Reson Imaging, 2005, 21(5): 512-519. DOI: 10.1002/jmrt.20305
[14]Ma D, Lu F, Zou X, et al. Intravoxel incoherent motion diffusionweighted imaging as an adjunct to dynamic contrast-enhanced MRI to improve accuracy of the differential diagnosis of benign and malignant breast lesions[J]. Magn Reson Imaging, 2016, pii: S0730-725X(16)30152-7. [Epub ahead of print]. DOI: 10.1016/j.mri.2016.10.005
[15]Federau C, Meuli R, O’Brien K, et al. Perfusion Measurement in Brain Gliomas with Intravoxel Incoherent Motion MRI[J]. Am J Neuroradiol, 2014, 35(2): 256-262. DOI: 10.3174/ajnr.A3686
[16]Bisdas S, Klose U. IVIM analysis of brain tumors: an investigation of the relaxation effects of CSF, blood, and tumor tissue on the estimated perfusion fraction[J]. MAGMA,2015, 28(4): 377-383. DOI: 10.1007/s10334-0140474-z
[17]Hu Y C, Yan L F, Wu L, et al. Intravoxel incoherent motion diffusionweighted MR imaging of gliomas: efficacy in preoperative grading[J]. Sci Rep, 2014, 4: 7208. DOI: 10.1038/Srep07208
[18]Liang R F, Wang X, Li M, et al. Potential role of fractional anisotropy derived from diffusion tensor imaging in differentiating high-grade gliomas from low-grade gliomas: a metaanalysis[J]. Int J Clin Exp Med, 2014, 7(10): 3647-3653.
[19]ElSerougy L, Abdel Razek A A, Ezzat A, et al. Assessment of diffusion tensor imaging metrics in differentiating low-grade from high-grade gliomas[J]. Neuroradiol J, 2016, [Epub ahead of print] . DOI: 10.1177/1971400916665382
[20]Jiang R, Du F Z, He C, et al. The value of diffusion tensor imaging in differentiating high-grade gliomas from brain metastases: a systematic review and metaanalysis[J]. PLoS One, 2014, 9(11): e112550. DOI: 10.1371/journal.pone.0112550
[21]Hempel J M, Bisdas S, Schittenhelm J, et al. In vivo molecular profiling of human glioma using diffusion kurtosis imaging[J]. J Neurooncol, 2016, [Epub ahead of print].DOI: 10.1007/s1106001622720
[22]Jiang R F, Jiang J J, Zhao L Y, et al. Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation[J]. Oncotarget, 2015, 6(39): 42380-42393.
[23]Fatima Z, Motosugi U, Hori M, et al. High bvalue qspace analyzed diffusionweighted MRI using 1.5 tesla clinical scanner; determination of displacement parameters in the brains of normal versus multiple sclerosis and low-grade glioma subjects[J]. J Neuroimaging, 2012, 22(3): 279-284. DOI: 10.1111/j.15526569.2011.00596.x
[24]Lewandowski K E, Ongur D, Sperry S H, et al. Myelin vs Axon Abnormalities in White Matter in Bipolar Disorder[J]. Neuropsychopharmacology, 2015, 40(5): 1243-1249. DOI: 10.1038/npp.2014.310
[25]Ward K M, Aletras A H, Balaban R S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST) [J]. J Magn Reson, 2000, 143(1): 79-87. DOI: 10.1006/jmre.1999.1956
[26]Zhou J Y, Payen J F, Wilson D A, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-1090. DOI: 10.1038/nm907
[27]Togao O, Yoshiura T, Keupp J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades[J]. Neuro Oncol, 2014, 16(3): 441-448. DOI: 10.1093/neuonc/not158
[28]Lee D H, Heo H Y, Zhang K, et al. Quantitative assessment of the effects of water proton concentration and water T1 changes on amide proton transfer (APT) and nuclear overhauser enhancement (NOE) MRI: The origin of the APT imaging signal in brain tumor[J]. Magn Reson Med, 2016, [Epub ahead of print].DOI: 10.1002/mrm.26131
[29]彭娟, 罗天友, 吕发金, 等. 氢质子MR波谱对脑结核瘤、胶质瘤及脑转移瘤的鉴别诊断价值[J]. 第三军医大学学报, 2009, 31(12): 1213-1216. DOI: 10.3321/j.issn:10005404.2009.12.025
[30]Chawla S, Krejza J, Vossough A, et al. Differentiation between Oligodendroglioma Genotypes Using Dynamic Susceptibility Contrast PerfusionWeighted Imaging and Proton MR Spectroscopy[J]. Am J Neuroradiol, 2013, 34(8): 1542-1549. DOI: 10.3174/ajnr.A3384
[31]Kats L M, Reschke M, Taulli R, et al. Proto-Oncogenic Role of Mutant IDH2 in Leukemia Initiation and Maintenance[J]. Cell Stem Cell, 2014, 14(3): 329-341. DOI: 10.1016/j.stem.2013.12.016
[32]Choi C, Ganji S K, DeBerardinis R J, et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDHmutated patients with gliomas[J]. Nat Med, 2012, 18(4): 624-629. DOI: 10.1038/nm.2682
[33]Gottschalk M, Tropres I, Lamalle L, et al. Refined modelling of the short-T2 signal component and ensuing detection of glutamate and glutamine in short-TE, localised, (1) H MR spectra of human glioma measured at 3 T[J]. NMR Biomed, 2016, 29(7): 943-951. DOI: 10.1002/nbm.3548
[34]Opstad K S, Wright A J, Bell B A, et al. Correlations Between In Vivo H-1 MRS and Ex Vivo H-1 HRMAS Metabolite Measurements in Adult Human Gliomas[J]. Journal of Magnetic Resonance Imaging, 2010, 31(2): 289-297. DOI: 10.1002/jmri.22039
[35]Babourina-Brooks B, Wilson M, Arvanitis T N, et al. MRS water resonance frequency in childhood brain tumours: a novel potential biomarker of temperature and tumour environment[J]. NMR Biomed, 2014, 27(10): 1222-1229. DOI: 10.1002/nbm.3177
[36]Wilkinson I D, Romanowski C A, Jellinek D A, et al. Motor functional MRI for preoperative and intraoperative neurosurgical guidance[J]. Br J Radiol, 2003, 76(902): 98-103. DOI: 10.1259/Bjr/66817309
[37]Jiang Z, Krainik A, David O, et al. Impaired fMRI activation in patients with primary brain tumors[J]. Neuroimage, 2010, 52(2): 538-548. DOI: 10.1016/j.neuroimage.2010.04.194
[38]Maesawa S, Bagarinao E, Fujii M, et al. Evaluation of Resting State Networks in Patients with Gliomas: Connectivity Changes in the Unaffected Side and Its Relation to Cognitive Function[J]. Plos One, 2015, 10(2): 191-209.DOI: 10.1371/journal.pone.0118072.
[39]Tuovinen N, de Pasquale F, Caulo M, et al. Transient effects of tumor location on the functional architecture at rest in glioblastoma patients: three longitudinal case studies[J]. Radiat Oncol, 2016, 11(1): 107. DOI: 10.1186/s13014-016-0683-x

更新日期/Last Update: 2016-11-23