[1]周兴宁,肖媛,李相位,等.3.0T MRI功能成像BOLD-fMRI静息态ALFF测量值在鉴别脑胶质瘤与脑炎中的价值[J].第三军医大学学报,2016,38(22):2393-2398.
 Zhou Xingning,Xiao Yuan,Li Xiangwei,et al.Value of amplitude of low frequency fluctuation from restingstate BOLDfMRI in differential diagnosis between glioma and encephalitis[J].J Third Mil Med Univ,2016,38(22):2393-2398.
点击复制

3.0T MRI功能成像BOLD-fMRI静息态ALFF测量值在鉴别脑胶质瘤与脑炎中的价值(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
38卷
期数:
2016年第22期
页码:
2393-2398
栏目:
专题报道
出版日期:
2016-11-30

文章信息/Info

Title:
Value of amplitude of low frequency fluctuation from restingstate BOLDfMRI in differential diagnosis between glioma and encephalitis
作者:
周兴宁肖媛李相位孟金丽周燚何万林吕粟
西藏自治区人民政府驻成都办事处医院放射科;四川大学华西医院放射科
Author(s):
Zhou XingningXiao YuanLi XiangweiMeng JinliZhou YiHe WanlinLyu Su

Department of Radiology, Chengdu Office-stationed Hospital of People’s Government of Tibetan Autonomous Region, Chengdu, Sichuan Prouince, 610041;Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China

关键词:
磁共振功能成像ALFF值脑胶质瘤脑炎
Keywords:
functional magnetic resonance imaging amplitude of low-frequency fluctuations glioma encephalitis
分类号:
R445.2;R512.3;R730.264
文献标志码:
A
摘要:

目的        通过测量静息态BOLD-fMRI低频振荡振幅ALFF(amplitude of lowfrequency fluctuation)值,分析其在脑胶质瘤、脑炎的健侧与患侧以及正常人群中的改变,探索ALFF值在鉴别诊断脑胶质瘤与脑炎的潜在价值。 方法        采用前瞻性病例-对照研究,对脑胶质瘤30例,脑炎30例及40名健康志愿者作静息态BOLD-fMRI检查,使用DPARSF软件计算ALFF,获得胶质瘤患侧组(ipsilateral glioma group,IGG)、胶质瘤健侧组(contralateral glioma group,CGG)、脑炎患侧组(ipsilateral encephalitis group,IEG)、脑炎健侧组(contralateral encephalitis group,CEG)和胶质瘤的正常对照组(corresponding areas of glioma in healthy control group,CAGHCG)、脑炎的正常对照组(corresponding areas of encephalitis in healthy control group,CAEHCG)的ALFF值。应用独立样本t检验、配对样本t检验及受试者工作特征(receiver operator characteristic curve,ROC)曲线进行统计学分析。结果      ①IGG与CGG、IGG与CAGHCG、IGG与IEG的ALFF值及(IGG-CGG)/IGG与(IEG-CEG)/IEG组间差异具有统计学意义(P<0.01)。②IGG与CGG、IGG与IEG的ROC曲线具有很高的AUG、诊断阈值、灵敏度和特异度。 结论        脑胶质瘤的ALFF值低于脑炎,对两者的鉴别诊断具有一定的应用价值。

Abstract:

Objective       To explore the application of blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) in differentiation between glioma and encephalitis by comparing the changes of amplitude of lowfrequency fluctuation (ALFF) in the patients with glioma or encephalitis and the healthy volunteers. Methods       Sixty patients, including 30 diagnosed with glioma and 30 diagnosed with encephalitis, and 40 healthy controls were enrolled for this prospective casecontrol study. All patients underwent resting-state BOLD-fMRI examination on both ipsilateral lesion and contralateral normal brain areas, and the healthy Volunteers underwent the examination too. Their ALFF values were processed and calculated by DPARSF software. Then the subjects were further divided into 6 groups, i.e., ipsilateral glioma group (IGG), contralateral glioma group (CGG), ipsilateral encephalitis group (IEG), contralateral encephalitis group (CEG), corresponding areas of glioma in healthy control group (CAGHCG) and corresponding areas of encephalitis in healthy control group (CAEHCG). Independent Sample t-test and paired sample t-test were performed to statistically analyze the changes of ALFF in the patients with glioma and encephalitis compared with healthy controls using SPSS statistics 17.0 statistical software.Statistical significance of ALFF for the diagnosis of glioma or encephalitis was examined by using receiver operating characteristic (ROC) curve.  Results     ①The ALFF differences between groups of IGG and CGG, IGG and CAGHCG , IGG and IEG ,(IGG-CGG) /IGG and (IEG-CEG) /IEG were statistically significant (P<0.01). ②The ROC analysis showed high values of the area under the curve (AUC), diagnostic threshold, sensitivity and specificity between groups of IGG and CGG, IGG and IEG. Conclusion       BOLD-fMRI measured ALFF in the glioma  patients  is significantly lower than those of encephalitis, which suggests potential value of ALFF for the differential diagnosis between glioma and encephalitis.

参考文献/References:

[1]Lagaru A, Mosci C, Mittra E, et al. Glioblastoma Multiforme Recurrence: An Exploratory Study of 18F FPPRGD2 PET/CT[J]. Radiology, 2015, 277(2): 497-506. DOI: 10.1148/radiol.2015141550
[2]Luo S, Qi R F, Wen J Q, et al. Abnormal Intrinsic Brain Activity Patterns in Patients with EndStage Renal Disease Undergoing Peritoneal Dialysis: A RestingState Functional MR Imaging Study[J]. Radiology, 2016, 278(1): 181-189. DOI: 10.1148/radiol.2015141913
[3]Zhang L J, Wen J, Liang X, et al. Brain Default Mode Network Changes after Renal Transplantation: A Diffusion-Tensor Imaging and RestingState Functional MR Imaging Study[J].Radiology, 2016, 278(2): 485-495.DOI: 10.1148/ radiol.2015150004
[4]Auer D P. Spontaneous low-frequency blood oxygenation leveldependent fluctuations and functional connectivity analysis of the ‘resting’ brain[J].Magn Reson Imaging, 2008, 26(7): 1055-1064. DOI: 10.1016/j.mri.2008.05.008
[5]Holodny A I, Schulder M, Liu W C, et al. Decreased BOLD functional MR activation of the motor and sensory cortices adjacent to a glioblastoma multiforme: implications for imageguided neurosurgery[J].AJNR Am J Neuroradiol, 1999,20(4): 609-612.
[6]Holodny A I, Schulder M, Liu W C, et al. The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for imageguided neurosrugery[J]. AJNR Am J Neuroradiol, 2000, 21(8): 1415-1422.
[7]Cui Y, Tha K K,Terasaka S, et al. Prognostic Imaging Biomarkers in Glioblastoma: Development and Independent Validation on the Basis of Multiregion and Quantitative Analysis of MR Images[J]. Radiology, 2016, 278(2): 546-553.DOI: 10.1148/radiol.2015150358
[8]肖炳祥. BOLDfMRI在脑肿瘤临床应用中的研究进展[J].中国临床神经外科杂志, 2010, 15(4): 211-214. DOI: 10.3969/j.issn.1009-153X.2010.04.007
[9]Ludemann L, Forschler A, Grieger W, et al. BOLD signal in the motor cortex shows a correlation with the blood volume of brain tumors[J]. Magn Reson Imaging, 2006, 23(4): 435-443.DOI: 10.1002/jmri.20530
[10]Schreiber A, Hubbe U, Ziyeh S, et al. The influence of gliomas and nonglica spaceoccupying lesions on blood-oxygen-level-dependent contrast enhancement[J]. AJNR Am J Neuroradiol, 2000, 21(6): 1055-1063.
[11]Chen C M, Hou B L, Holodny A I. Effect of age and tumor grade on BOLD functional MR imaging in preoperative assessment of patients with glioma[J].Radiology, 2008, 248(3): 971-978. DOI: 10.1148/radiol.2483071280
[12]刘浩, 林青, 徐文坚, 等. 血氧水平依赖功能磁共振成像评价脑肿瘤恶性程度与脑皮层功能区距离和激活体积的相关性[J].中国医学影像学杂志, 2012, 20(2): 97-102. DOI: 10.3969/j.issn.1005-5185.2012.02.007
[13]Krings T, Topper R, Willmes K, et al. Activation in primary and secondary motor areas in patients with CNS neoplasms and weakness[J]. Neurology, 2002, 58(3): 381-390.
[14]Colen R R, Wang J, Singh S K, et al. Glioblastoma: Imaging Genomic Mapping Reveals Sexspecific Oncogenic Associations of Cell Death[J]. Radiology, 2015, 275(1): 215-227. DOI: 10.1148/radiol.14141800
[15]乐晓峰, 孙彬佳, 郭斯翊, 等.血管生成拟态在肿瘤研究中的现状与展望[J]. 现代肿瘤医学, 2014, 22(9): 2204-2208. DOI: 10.3969/j.issn.1672-4992.2014.09.64
[16]Louis Gagnon, Sava Sakad-i1'c, Frédéric Lesage, et al. Quantifying the Microvascular Origin of BOLDfMRI from First Principles with Two-Photon Microscopy and an OxygenSensitive Nanoprobe[J]. J Neurosci, 2015, 35(8): 3663-3675. DOI: 10.1523/JNEUROSCI.3555-14.2015
[17]何慧瑾, 冯晓源.重视MRI新技术在脑肿瘤诊断中的合理应用[J].磁共振成像, 2012, 3(1): 4-7. DOI: 10.3969/j.issn.1674-8034.2012.01.002
[18]陈波.肿瘤血管生成的影像学评价[J].医学研究生报, 2011, 24(2): 196-202. DOI: 10.3969/j.issn.10088199. 2011.02.021
[19]刘丽.肿瘤血管生成的影像学评价及新进展[J]. 医学研究生报, 2012, 25(10): 1102-1108. DOI: 10.3969/j.issn. 1008-8199.2012.10.025
[20]冯少仁, 刘国辉, 邹国荣, 等.肿瘤样脑炎的MRI表现分析[J].放射学实践, 2012,27(7): 739-741. DOI: 10.3969/j.issn.1000-0313.2012.07.009
[21]Sui Y, Wang H, Liu G, et al. Differentiation of Low- and High-Grade Pediatric Brain Tumors with High bValue Diffusion-weighted MR Imaging and a Fractional Order Calculus Model.[J]. Radiology, 2015, 277(2): 489-496. DOI: 10.1148/radiol.2015142156
[22]Bai Y, Lin Y, Tian J, et al. Grading of Gliomas by Using Monoexponential, Biexponential, and Stretched Exponential Diffusionweighted MR Imaging and Diffusion Kurtosis MR Imaging[J].Radiology, 2016, 278(2): 496-504. DOI: 10.1148/radiol.2015142173
[23]Park J E, Kim H S, Park K J, et al. Pre and Posttreatment Glioma: Comparison of Amide Proton Transfer Imaging with MR Spectroscopy for Biomarkers of Tumor Proliferation[J]. Radiology, 2016, 278(2): 514-523. DOI: 10.1148/radiol.2015142979

更新日期/Last Update: 2016-11-23