[1]程胜桃,任吉华,刘波,等.热休克蛋白B1抑制HBV复制的研究[J].第三军医大学学报,2016,38(23):2492-2498.
 Cheng Shengtao,Ren Jihua,Liu Bo,et al.Heat shock protein B1-mediated inhibition of hepatitis B virus replication in vitro[J].J Third Mil Med Univ,2016,38(23):2492-2498.
点击复制

热休克蛋白B1抑制HBV复制的研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
38卷
期数:
2016年第23期
页码:
2492-2498
栏目:
基础医学
出版日期:
2016-12-15

文章信息/Info

Title:
Heat shock protein B1-mediated inhibition of hepatitis B virus replication in vitro
作者:
程胜桃任吉华刘波陈娟
重庆医科大学感染性疾病分子生物学教育部重点实验室
Author(s):
Cheng Shengtao Ren Jihua Liu Bo Chen Juan

Key Laboratory of Molecular Biology for Infectious Diseases of Ministry of Education, Chongqing Medical University, Chongqing, 400016, China

关键词:
乙型肝炎病毒热休克蛋白B1病毒复制
分类号:
R341; R373.21; R394.3
文献标志码:
A
摘要:

目的       探讨热休克蛋白B1(heat shock protein B1,HSPB1)对乙型肝炎病毒(HBV)复制的影响。方法      采用Western blot检测正常肝细胞系(HepRG)和HBV稳定复制细胞系(HepAD38和HepG2.2.15)中HSPB1的蛋白水平。在HBV稳定复制细胞系(HepAD38和HepG2.2.15)中转染pCMV6HSPB1质粒及对照质粒,采用Western blot验证HSPB1过表达水平,实时荧光定量PCR和Southern blot检测HSPB1过表达对HBV复制中间体表达的影响;qRT-PCR检测HSPB1过表达对HBV 3.5 kb mRNA表达的影响;ELISA检测HSPB1过表达对HBV s抗原(HBsAg)和e抗原(HBeAg)分泌的影响。在肝癌细胞系Huh-7中共转染pCH9/3091和pCMV6-HSPB1质粒,采用Western blot验证HSPB1过表达水平,实时荧光定量PCR和Southern blot检测HSPB1过表达对瞬时转染的HBV复制中间体表达的影响。结果HSBP1在HepAD38和HepG2.2.15中的表达明显低于HepRG。HSPB1在HepAD38和HepG2.2.15细胞中成功过表达,在过表达HSPB1的HepAD38和HepG2.2.15细胞中HBV复制中间体水平以及3.5 kb mRNA水平均降低,细胞培养上清中HBsAg和HBeAg的分泌水平也降低。HSPB1在转染pCH9/3091的Huh-7细胞中成功过表达,HSPB1过表达抑制了瞬时表达的HBV的复制水平。结论     HSPB1可以抑制HBV复制。

Abstract:

Objective      To determine the effect of heat shock protein B1 (HSPB1) on the replication of hepatitis B virus (HBV).  Methods      The expression level of HSPB1 in the normal liver cell line (HepRG) and HBV stable replication cell lines (HepAD38 and HepG2.2.15) was determined by Western blotting. Both HepAD38 cells and HepG2.2.15 cells were transfected with pCMV6-HSPB1 or control vector, and the over-expression efficiency of HSPB1 was confirmed by Western blotting. The effect of HSPB1 on HBV replicative intermediates was measured by real-time PCR and Southern blotting. The effect of HSPB1 on the HBV 3.5kb mRNA was determined by qRT-PCR. And the secretion levels of HBsAg and HBeAg in the cell culture medium were detected by ELISA. Finally, pCH9/3091 and pCMV6-HSPB1 were co-transfected in Huh-7 cells, and its efficiency was confirmed by Western blotting. The effect of HSPB1 on HBV replicative intermediates was measured by real-time PCR and Southern blotting.  Results      The expression level of HSPB1 was obviously decreased in HepAD38 cells and HepG2.2.15 cells when compared with HepRG cells. HBV replicative intermediates, 3.5kb mRNA level and the secretion levels of HBsAg and HBeAg were decreased in HepAD38 cells and HepG2.2.15 cells with HSPB1 over-expression. HSPB1 was over-expressed in the pCH9/3091-transfected Huh-7 cells, which inhibited the replication of HBV.  Conclusion      HSPB1 can inhibit HBV replication.

参考文献/References:

[1]Mohammadi Z,  Keshtkar A,  Eghtesad S,  et al. Epidemiological Profile of Hepatitis B Virus Infection in Iran in the Past 25 years; A Systematic Review and Metaanalysis of General Population Studies[J]. Middle East J Dig Dis,  2016,  8(1):  5-18. DOI:  10.15171/mejdd.2016.01
[2]Morikawa K,  Suda G,  Sakamoto N. Viral life cycle of hepatitis B virus:  host factors and druggable targets[J]. Hepatol Res,  2016,  46(9): 871-877. DOI:  10.1111/hepr.12650
[3]Ren J H,  Tao Y,  Zhang Z Z,  et al. Sirtuin 1 regulates hepatitis B virus transcription and replication by targeting transcription factor AP-1[J]. J Virol,  2014,  88(5):  2442-2451. DOI:  10.1128/JVI.02861-13
[4]任吉华, 冉龙宽, 李宛蔚, 等.细胞周期蛋白D2对HBV复制的影响[J].第三军医大学学报, 2015, 37(15): 1550-1554. DOI:  10.16016 /j1000-5404.201411228
[5]Guo H,  Xu C,  Zhou T,  et al. Characterization of the host factors required for hepadnavirus covalently closed circular (ccc) DNA formation[J]. Plos one,  2012,  7(8):  e43270. DOI:  10.1371/journal.pone.0043270
[6]Jeong G U,  Park I H,  Ahn K,  et al. Inhibition of hepatitis B virus replication by a dNTPasedependent function of the host restriction factor SAMHD1[J]. Virology,  2016,  495:  71-78. DOI:  10.1016/j.virol.2016.05.001
[7]Mizrahi T,  Heller J,  Goldenberg S,  et al. Heat shock proteins and resistance to desiccation in congeneric land snails[J]. Cell Stress Chaperones,  2010,  15(4):  351-363. DOI:  10.1007/s12192-009-0150-9
[8]Garrido C,  Brunet M,  Didelot C, et al. Heat shock proteins 27 and 70:  anti-apoptotic proteins with tumorigenic properties[J]. Cell Cycle,  2006,  5(22):  2592-2601. DOI:  10.4161/cc.5.22.3448
[9]Melle C,  Ernst G,  Escher N,  et al. Protein profiling of microdissected pancreas carcinoma and identification of HSP27 as a potential serum marker[J]. ClinChem,  2007,  53(4):  629-635. DOI:  10.1373/clinchem.2006.079194
[10]Ciocca D R,  Calderwood S K. Heat shock proteins in cancer:  Diagnostic,  prognostic,  predictive,  and treatment implications[J]. Cell Stress Chaperones,  2005,  10(2):  86-103.
[11]Zoubeidi A,  Gleave M. Small heat shock proteins in cancer therapy and prognosis[J]. Int J Biochem Cell Biol,  2012,  44(10):  1646-1656. DOI:  10.1016/j.biocel.2012.04.010
[12]Sherman M,  Multhoff G. Heat shock proteins in cancer[J]. Ann N Y Acad Sci,  2007,  1113: 192-201. DOI:  10.1196/annals.1391.030
[13]Choi Y W,  Tan Y J,  Lim S G, et al. Proteomic approach identifies HSP27 as an interacting partner of the hepatitis C virus NS5A protein[J]. Biochem Biophys Res Commun,  2004,  318 (2):  514-519. DOI:  10.1016/j.bbrc.2004.04.052
[14]Mathew S S,  Della Selva M P,  Burch A D. Modification and reorganization of the cytoprotective cellular chaperone Hsp27 during herpes simplex virus type 1 infection[J]. J Virol,  2009,  83 (18):  9304-9312. DOI:  10.1128/JVI.0182608
[15]Rajaiya J,  Yousuf M A,  Singh G, et al. Heat shock protein 27 mediated signaling in viral infection[J]. Biochemistry,  2012,  51(28):  5695-5702. DOI:  10.1021/bi3007127
[16]Liu J,  Zhang L,  Zhu X,  et al. Heat shock protein 27 is involved in PCV2 infection in PK-15 cells[J]. Virus Res,  2014,  189:  235-242. DOI:  10.1016/j.virusres.2014.05.024
[17]Tornesello M L,  Buonaguro L,  Izzo F,  et al.Molecular alterations in hepatocellular carcinoma associated with hepatitis B and hepatitis C infections[J]. Oncotarget,  2016, 7(18): 25087-25102.DOI:  10.18632/Oncotarget.7837
[18]Harimoto N,  Shimada M,  Aishima S,  et al. The role of heat shock protein 27 expression in hepatocellular carcinoma in Japan:  Special reference to the difference between hepatitis B and C[J]. Liver Int,  2004,  24(4):  316-321. DOI:  10.1111/j.1478-3231.2004.0927.x
[19]King K L,  Li A F,  Chau G Y,  et al. Prognostic significance of heat shock protein27 expression in hepatocellular carcinoma and its relation to histologic grading and survival[J]. Cancer,  2000,  88(11):  2464-2470.
[20]Feng J T,  Liu Y K,  Song  H Y,  et al. Heat-shock protein 27:  A potential biomarker for hepatocellular carcinoma identified by serum proteome analysis[J]. Proteomics,  2005,  5(17):  4581-4588. DOI:  10.1002/pmic.200401309
[21]Yang Z,  Zhuang L,  Szatmary P,  et al. Upregulation of heat shock proteins (HSPA12A,  HSP90B1,  HSPA4,  HSPA5 and HSPA6) in tumour tissues is associated with poor outcomes from HBV-related early-stage hepatocellular carcinoma[J]. Int J Med Sci,  2015,  12(3):  256-263. DOI:  10.7150/ijms.10735
[22]Levrero M,  Zucman-Rossi J. Mechanisms of HBVinduced hepatocellular carcinoma[J]. J Hepatol,  2016,  64(1 Suppl):  S84-S101. DOI:  10.1016/j.jhep.2016.02.021
[23]Sreekanth G P,  Chuncharunee A,  Sirimontaporn A,  et al.SB203580 Modulates p38 MAPK signaling and dengue virus-induced liver injury by reducing MAPKAPK2,  HSP27,  and ATF2 phosphorylation[J].PLoS One,  2016,  11(2):  e0149486. DOI:  10.1371/journal.pone.0149486
[24]Corcoran J A,  Johnston B P,  McCormick C.Viral activation of MK2-hsp27-p115 RhoGEFRhoA signaling axis causes cytoskeletal rearrangements,  P-body disruption and AREmRNA stabilization[J]. PLoS Pathogens, 2015, 11(1): e1004597. DOI:  10.1371/journal.ppat.1004597
[25]Peppenelli M A,  Arend K C,  Cojohari O,  et al. Human cytomegalovirus stimulates the synthesis of select Akt-dependent antiapoptotic proteins during viral entry to promote survival of infected monocytes[J]. J Virol,  2016,  90(6):  3138-3147. DOI:  10.1128/JVI.0287915
[26]Blondot M L,  Bruss V,  Kann M. Intracellular transport and egress of hepatitis B virus[J]. J Hepatol,  2016,  64(1 Suppl):  S49-S59. DOI:  10.1016/j.jhep.2016.02.008
[27]Tadros S F,  D’Souza M,  Zhu X,  et al. Gene expression changes for antioxidants pathways in the mouse cochlea:  relations to age-related hearing deficits[J]. PLoS One,  2014,  9(2):  e90279. DOI:  10.1371/journal.pone.0090279. eCollection 2014
[28]Poussard S,  PiresAlves A,  Diallo R,  et al. A natural antioxidant pine bark extract,  Oligopin,  regulates the stress chaperone HSPB1 in human skeletal muscle cells:  a proteomics approach[J]. Phytother Res,  2013,  27(10):  1529-1535. DOI:  10.1002/ptr.4895
[29]Song T F,  Zhang Z F,  Liu L,  et al. Small interfering RNAmediated silencing of heat shock protein 27 (HSP27) Increases chemosensitivity to paclitaxel by increasing production of reactive oxygen species in human ovarian cancer cells (HO8910)[J]. J Int Med Res,  2009,  37(5):  1375-1388.
[30]Cai J,  Chen Y,  Seth S,  et al. Inhibition of influenza infection by glutathione[J]. Free Radic Biol Med,  2003,  34(7):  928-936.
[31]Aquaro S,  Muscoli C,  Ranazzi A,  et al. The contribution of peroxynitrite generation in HIV replication in human primary macrophages[J]. Retrovirology,  2007,  4:  76. DOI:  10.1186/17424690-4-76
[32]Ren J H,  Chen X,  Zhou L,  et al. Protective role of sirtuin3 (SIRT3) in oxidative stress mediated by hepatitis B virus X protein expression[J]. PLoS ONE,  2016,  11 (3):  e0150961. DOI:  10.1371/journal.pone.0150961
[33]Kim Y S,  Seo H W,  Jung G. Reactive oxygen species promote heat shock protein 90mediated HBV capsid assembly[J]. Biochem Biophys Res Commun,  2015,  457(3):  328-333. DOI:  10.1016/j.bbrc.2014.12.110

更新日期/Last Update: 2016-12-05