[1]夏林莺,刘莎,龚财惠,等.婴幼儿潮气呼吸肺功能指标的预计公式模型构建与评价[J].第三军医大学学报,2016,38(22):2450-2456.
 Xia Linying,Liu Sha,Gong Caihui,et al.Modeling and evaluation of reference equations for lung function in tidal breathing measurement among infants and young children[J].J Third Mil Med Univ,2016,38(22):2450-2456.
点击复制

婴幼儿潮气呼吸肺功能指标的预计公式模型构建与评价(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
38卷
期数:
2016年第22期
页码:
2450-2456
栏目:
临床医学
出版日期:
2016-11-30

文章信息/Info

Title:
Modeling and evaluation of reference equations for lung function in tidal breathing measurement among infants and young children
作者:
夏林莺刘莎龚财惠符州
重庆医科大学附属儿童医院儿科研究所,儿童发育疾病研究教育部重点实验室,儿童发育重大疾病国家国际科技合作基地,儿科学重庆市实验室,重庆医科大学附属儿童医院呼吸中心
Author(s):
Xia Linying Liu Sha Gong Caihui Fu Zhou

Pediatric Research Institute, Key Laboratory of Child Development and Disorders of Ministry of Education, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chonqing Key Laboratory of Pediatrics, Center of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing 400014

关键词:
肺功能潮气呼吸多元线性回归预计公式
Keywords:
lung function tests tidal breathingmultiple regression predictive equation
分类号:
R174;R195.2;R332.1
文献标志码:
A
摘要:

目的     建立及评价西南地区婴幼儿(0~3岁)潮气呼吸肺功能预计公式。方法     采用德国JAEGER 体积描记肺功能仪(MasterScreenTM Babybody plethysmograph),对来自西南地区166名0~3岁婴幼儿,进行潮气呼吸肺功能共12个指标的测定。通过 SPSS18.0 统计软件对数据进行处理,首先对各个肺功能指标与肺功能影响因素作相关性分析。二分类资料对各个肺功能指标的影响通过t检验进行分析。各个肺功能指标作为方程的因变量,以性别(S)、年龄(A)、身长(L)、体质量(W)为自变量,作多元逐步回归,建立线性多元回归方程。将本研究构建的方程与国外文献中相应年龄范围的正常婴幼儿各个肺功能指标的方程进行比较,采用相对预测误差的平均值(%)=Σ∣预计值-实测值∣/预计值×100%/n,评价各预计公式的优劣。结果      肺功能指标与年龄、体质量、身长及性别相关,婴幼儿呼吸频率与年龄呈直线负相关(r=-0.5),RR=30.30-0.06×A;婴幼儿潮气量与年龄呈直线正相关(r=0.8),VT=20.80+0.34×A+4.38×W+4.91×S;峰流速与潮气量的比与年龄呈直线负相关(r=-0.4),PTEF/VT=130.72-0.27×A-8.98×S; 流速指标均与体质量呈直线正相关(r=0.5,0.5,0.6,0.6),PEF=25.62+6.88×W;TEF75=20.33+6.99×W;TEF50=23.07+6.39×W;TEF25=0.07+2.57×W+0.55×L。预计公式模型比较后显示,构建的预计模型及Nguyen TT的模型对本研究群体有较好的适用性。结论     建立的婴幼儿各项潮气呼吸肺功能指标的预计公式适用于中国西南地区3岁以下儿童的相关指标的预测。潮气呼吸肺功能指标与年龄和/或体质量呈线性相关。

Abstract:

Objective      To develop and evaluate the reference equation of tidal breathing parameters for Chinese infants and young children up to 3 years old in the Southwest.  Methods      Pulmonary function tests were measured in 166 infants using the Jaeger BabyBody system with standard protocols. Twelve tidal breathing parameters were analyzed. SPSS software (version 18.0) was used for statistical analyses. Association between each parameter and related variables on lung function were quantified using Pearson correlation. The impact of Dichotomous variables on lung function was analyzed by independent sample t test. Reference equations adjusted for independent variables, i.e., body weight (W) and length (L), age (A), and sex (S) were built using stepwise regression model. A comparison between our estimates and those published reference equations was done by the mean of relative prediction error (RPE%),which was defined as RPE%=Σ∣predicted value-observed value∣/ predicted value*100%/n.  Results      The following equations described the correlation of tidal breathing parameters to the variables W, L, A and S: VT (tidal volume)=20.80+0.34×A+4.38×W+4.91×S; RR (respiratory rate)=30.30-0.06×A; PTEF/VT (peak tidal expiratory flow to tidal volume)=130.72-0.27×A-8.98×S; PEF (peak expiratory flow)=25.62+6.88×W;TEF75 (tidal expiratory flow when 75% of tidal volume remained in the lungs)=20.33+6.99×W;TEF50=23.07+6.39×W;TEF25=0.07+2.57×W+0.55×L. Among them, RR and PTEF/VT were negative linear correlated to age. The correlation coefficient r were -0.5 and -0.4, respectively. In contrast, a positive linear relationship was found between VT and age (r=0.8) as well as expiratory flow (including both PEF and TEF) and body weight (r=0.5, 0.5, 0.6, and 0.6 for PEF, TEF75, TEF50, and TEF25). The RPE% analysis indicated that our developed reference equations and equations reported by Nguyen TT were more applicable to 0~3 years’ old infants and children of our population.  Conclusion      Our newly defined reference equations for tidal breathing parameters are applicable for infants and young children up to 3 years old in Southwest China by using commercially available equipment. The tidal breathing parameters are linear related to age and/or weight.
 

参考文献/References:

[1]Santos N, Almeida I, Couto M, et al. Feasibility of routine respiratory function testing in preschool children[J]. Rev Port Pneumol, 2013, 19(1): 38-41. DOI:10.1016/j.rppneu.2012.09. 004
[2]Godfrey S, Springer C, Bar-Yishay E. Evaluating the lung function of infants[J]. Isr Med Assoc J, 2009, 11(8): 492-497.
[3]Stocks J, Modi N, Tepper R. Need for healthy control subjects when assessing lung function in infants with respiratory disease[J]. Am J Respir Crit Care Med, 2010, 182(11): 1340-1342. DOI:10.1164/rccm.2010081338ED
[4]Lum S, Hoo A F, Hulskamp G, et al. Potential misinterpretation of infant lung function unless prospective healthy controls are studied[J]. Pediatr Pulmonol, 2010, 45(9): 906-913. DOI:10.1002/ppul.21255
[5]Gaultier C, Fletcher M E, Beardsmore C, et al. Respiratory function measurements in infants: measurement conditions. Working Group of the European Respiratory Society and the American Thoracic Society[J]. Eur Respir J, 1995, 8(6): 1057-1066.
[6]Frey U, Stocks J, Coates A, et al. Specifications for equipment used for infant pulmonary function testing. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. European Respiratory Society/ American Thoracic Society[J]. Eur Respir J, 2000, 16(4): 731-740.
[7]Bates J H, Schmalisch G, Filbrun D, et al. Tidal breath analysis for infant pulmonary function testing. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. European Respiratory Society/American Thoracic Society[J]. Eur Respir J, 2000, 16(6): 1180-1192.
[8]Iyer V N, Schroeder D R, Parker K O, et al. The nonspecific pulmonary function test: longitudinal followup and outcomes.[J]. Chest, 2011, 139(4): 878-886.
[8]Hyatt R E, Scanlon P D, Nakamura M. Interpretation of pulmonary function tests[M]. Lippincott Williams & Wilkins, 2014.
[9]郑劲平. 我国肺功能检测应用现状的调查和分析[J]. 中华结核和呼吸杂志, 2002, 25(2): 8-12.
[10]郭娥. 我国肺功能应用现状调查[D]. 广州: 广州医科大学, 2013.
[11]Nguyen T T, Hoo A F, Lum S, et al. New reference equations to improve interpretation of infant lung function[J]. Pediatr Pulmonol, 2013, 48(4): 370-380. DOI:10.1002/ppul.22656
[12]Lai S H, Liao S L, Yao T C, et al. Respiratory Function in Healthy Taiwanese Infants: Tidal Breathing Analysis, Passive Mechanics, and Tidal Forced Expiration[J]. Plos one , 2015, 10(11):e0142797. DOI:10.1371/journal.pone.0142797
[13]夏林莺, 刘莎, 龚财惠, 等. 婴幼儿功能残气量的预测模型构建与评价[J]. 中国卫生统计, 2016, 33(1): 35-38.
[14]吴冀川, 樊寻梅, 刘玺成, 等. 健康婴幼儿潮气流速容量曲线特点及意义[J]. 实用儿科临床杂志, 1999, 14(1): 11-12. DOI:10.3969/j.issn.1003515X.1999.01.006
[15]Kotecha S J, Watkins W J, Paranjothy S, et al. Effect of late preterm birth on longitudinal lung spirometry in school age children and adolescents[J]. Thorax, 2012, 67(1): 54-61. DOI:10.1136/thoraxjnl2011200329
[16]张皓, 肖现民, 郑珊, 等. 1002例4岁以下小儿潮气呼吸流速-容量环正常值的研究[J]. 临床儿科杂志, 2006, 24(6): 486-488. DOI:10.3969/j.issn.1000-3606.2006.06.021
[17]Jedrychowski W A, Perera F P, Spengler J D, et al. Intrauterine exposure to fine particulate matter as a risk factor for increased susceptibility to acute bronchopulmonary infections in early childhood[J]. Int J Hyg Environ Health, 2013, 216(4): 395-401. DOI:10.1016/j.ijheh.2012.12.014
[18]贺湘玲, 张兵, 陈敏, 等. 剖宫产儿潮气呼吸肺功能的动态变化[J]. 中国新生儿科杂志, 2007, 22(1): 2-5. DOI:10.3969/j.issn.1673-6710.2007.01.002
[19]Quanjer P H, Stanojevic S, Cole T J, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations[J]. Eur Respir J, 2012, 40(6): 1324-1343. DOI:10.1183/09031936.00080312

更新日期/Last Update: 2016-11-23