[1]孙珂媛,杨京,谢杨丽,等.骨培养探讨脂多糖对小鼠骨骼发育及矿化的影响[J].第三军医大学学报,2016,38(11):1235-1239.
 Sun Keyuan,Yang Jing,Xie Yangli,et al.Effects of LPS on bone development and mineralization in mouse bone culture[J].J Third Mil Med Univ,2016,38(11):1235-1239.
点击复制

骨培养探讨脂多糖对小鼠骨骼发育及矿化的影响(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
38卷
期数:
2016年第11期
页码:
1235-1239
栏目:
基础医学
出版日期:
2016-06-15

文章信息/Info

Title:
Effects of LPS on bone development and mineralization in mouse bone culture
作者:
孙珂媛杨京谢杨丽徐伟王权杜晓兰陈林
第三军医大学大坪医院野战外科研究所:创伤实验室,骨代谢修复中心,创伤烧伤与复合伤国家重点实验室,康复科
Author(s):
Sun Keyuan Yang Jing Xie Yangli Xu Wei Wang Quan Du Xiaolan Chen Lin

State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Trauma Center, Department of Rehabilitation Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China

关键词:
LPS骨培养骨发育骨矿化小鼠
Keywords:
LPS bone culture bone development bone mineralization mice
分类号:
R-332; R336; R343.8
文献标志码:
A
摘要:

目的      探讨体外培养情况下脂多糖(lipopolysaccharides,LPS)刺激对小鼠骨骼发育和矿化的影响及其机制。      方法      分离E18.5 d小鼠跖骨和胫骨,分为空白对照组(Blank组)及LPS组(10 μg/mL LPS)。分别于培养后第1、7天照相,计算跖骨和胫骨全长增长率(TL-rate)、矿化带增长率(CZ-rate)、第7天矿化带占骨全长的比例(CZ%)。培养7 d后固定、石蜡包埋切片,臧红固绿和甲苯胺蓝染色观察肥大带宽度、Ⅱ型胶原(collagenⅡ, ColⅡ)、Ⅹ型胶原(collagen Ⅹ, ColⅩ)免疫组化染色观察软骨细胞分化及TUNEL染色观察软骨细胞凋亡变化。      结果      与Blank组比较,LPS处理后跖骨和胫骨TL-rate 及CZ-rate明显降低(跖骨TL-rate P=0.025;跖骨CZ-rate P=0.019;胫骨TL-rate P=0.010;胫骨CZ-rate P=0.024)。臧红固绿、甲苯胺蓝染色及形态计量显示LPS组胫骨肥大带较Blank组明显变短(P<0.001)。与Blank组比较, LPS组胫骨的软骨分化相关蛋白ColⅡ、ColⅩ表达降低,软骨细胞凋亡明显增加。      结论      LPS通过抑制软骨增生、分化及促进肥大带软骨细胞凋亡来抑制骨骼发育及矿化。

Abstract:

Objective      To determine the effect of lipopolysaccharides (LPS) on bone development and mineralization of mice using metatarsal and tibia culture.        Methods      Metatarsals and tibias of embryonic mice at E18.5 were distracted, and divided to blank group and LPS group which was treated with 10 μg/mL LPS. Images of metatarsals and tibias on day 1 and day 7 were obtained to measure the total length and the calcified zone length using Image Pro Plus software. Then the growth rate of total length (TL-rate) and calcified zone (CZ-rate) and the proportion of the calcified zone in the total length (CZ%) were calculated. After 7-day culture, the tibias were embedded in paraffin. Safranin-O and fast green staining was used to measure the length of hypertrophic zone. Immunohistochemical staining for collagen Ⅱ (ColⅡ) and collagen Ⅹ (ColⅩ) was carried out to observe the differentiation of chondrocytes. TUNEL staining was used to observe the apoptosis of chondrocytes.       Results      Measurement data from Image Pro Plus software showed that both TL-rate and CZ-rate of the metatarsals and tibias were lower in the LPS group than in blank group (metatarsal TL-rate P=0.025; metatarsal CZ-rate P=0.019; tibia TL-rate P=0.010; tibia CZ-rate P=0.024). Safranin-O and fast green staining and bone histomorphometry results showed that the hypertrophic zone of the LPS group was obviously shorter than that of the blank group (P<0.001). Immunohistochemical results showed that the expressions of ColⅡand ColⅩ were significantly decreased in the LPS group compared with the blank group. TUNEL staining found more apoptosis in the LPS group.        Conclusion      LPS inhibits the embryonic bone development and mineralization through inhibiting the growth of hypertrophic zone and differentiation of the chondrocytes and promoting the apoptosis of chondrocytes.

参考文献/References:

[1]周红, 刘鑫, 郑江. 脓毒症治疗——挑战与机遇并存[J]. 第三军医大学学报, 2013, 35(2): 91-94. DOI: 10.16016/j.1000-5404.2013.02.027
[2]吴燕燕, 赵金川, 鲁力. 连续性高容量血液滤过对脓毒症合并重度急性呼吸窘迫综合征的疗效分析[J]. 第三军医大学学报, 2015, 37(17): 1782-1786. DOI: 10.16016/j.1000-5404.201503161
[3]田洪居, 姜燕, 李建英, 等. 动静脉二氧化碳分压差/氧含量差值在重症脓毒症及休克患者复苏中的意义[J]. 第三军医大学学报, 2015, 37(14): 1482-1485. DOI: 10.16016/j.1000-5404.201410195
[4]刘占国, 谭晓莹, 蔡靓, 等. 脓毒症患者危重程度与血清IL-6的相关性分析[J]. 第三军医大学学报, 2012, 34(21): 2233. DOI: 10.16016/j.1000-5404.2012.21.030
[5]Majka M, Kijowski J, Lesko E, et al. Evidence that platelet-derived microvesicles may transfer platelet-specific immunoreactive antigens to the surface of endothelial cells and CD34+ hematopoietic stem/progenitor cells--implication for the pathogenesis of immune thrombocytopenias[J]. Folia Histochem Cytobiol, 2007, 45(1): 27-32.
[6]Liu L J, Curjuric I, Keidel D, et al. Characterization of source-specific air pollution exposure for a large population-based Swiss cohort (SAPALDIA)[J]. Environ Health Perspect, 2007, 115(11): 1638-1645. DOI: 10.1289/ehp.10177
[7]Alberti C, Brun-Buisson C, Burchardi H, et al. Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study[J]. Intensive Care Med, 2002, 28(2): 108-121. DOI: 10.1007/s00134-001-1143-z
[8]Skrupky L P, Kerby P W, Hotchkiss R S. Advances in the management of sepsis and the understanding of key immunologic defects[J]. Anesthesiology, 2011, 115(6): 1349-1362. DOI: 10.1097/ALN.0b013e31823422e8
[9]Angus D C, Pereira C A, Silva E. Epidemiology of severe sepsis around the world[J]. Endocr Metab Immune Disord Drug Targets, 2006, 6(2): 207-212.
[10]赵子瑜, 杨京, 谢杨丽, 等. 全身应急情况下骨骼的变化及意义[J]. 解放军医学杂志, 2008, 33(7): 203-207.
[11]Zhang Y, Su N, Luo F, et al. Deletion of Fgfr1 in osteoblasts enhances mobilization of EPCs into peripheral blood in a mouse endotoxemia model[J]. Int J Biol Sci, 2014, 10(9): 1064-1071. DOI: 10.7150/ijbs.8415
[12]Xie Y, Su N, Jin M, et al. Intermittent PTH (1-34) injection rescues the retarded skeletal development and postnatal lethality of mice mimicking human achondroplasia and thanatophoric dysplasia[J]. Hum Mol Genet, 2012, 21(18): 3941-3955. 10.1093/hmg/dds181
[13]Porter R L, Calvi L M. Communications between bone cells and hematopoietic stem cells[J]. Arch Biochem Biophys, 2008, 473(2): 193-200. DOI: 10.1016/j.abb.2008.04.001
[14]Nakashima T, Takayanagi H. The dynamic interplay between osteoclasts and the immune system[J]. Arch Biochem Biophys, 2008, 473(2): 166-171. DOI: 10.1016/j.abb. 2008.04.004
[15]Caetano-Lopes J, Canhao H, Fonseca J E. Osteoimmunology—the hidden immune regulation of bone[J]. Autoimmun Rev, 2009, 8(3): 250-255. DOI: 10.1016/j.autrev.2008.07.038
[16]Lee N K, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton.[J]. Cell, 2007(3): 456-469. DOI: 10.1016/j.cell.2007.05.047
[17]Chua J S, Rofe A M, Coyle P. Dietary zinc supplementation ameliorates LPS-induced teratogenicity in mice[J]. Pediatr Res, 2006, 59(3): 355-358. DOI: 10.1203/01.pdr.0000199906. 37619.9c
[18]Xu D X, Chen Y H, Zhao L, et al. Reactive oxygen species are involved in lipopolysaccharide-induced intrauterine growth restriction and skeletal development retardation in mice[J]. Am J Obstet Gynecol, 2006, 195(6): 1707-1714. DOI: 10.1016/j.ajog.2006.03.047
[19]Tan L, Peng H, Osaki M, et al. Egr-1 mediates transcriptional repression of COL2A1 promoter activity by interleukin-1beta[J]. J Biol Chem, 2003, 278(20): 17688-17700. DOI: 10.1074/jbc.M301676200
[20]Chang C H, Hsu Y M, Chen Y C, et al. Anti-inflammatory effects of hydrophilic and lipophilic statins with hyaluronic acid against LPS-induced inflammation in porcine articular chondrocytes[J]. J Orthop Res, 2014, 32(4): 557-565. DOI: 10.1002/jor.22536
[21]Campo G M, Avenoso A, Campo S, et al. Glycosaminoglycans modulate inflammation and apoptosis in LPS-treated chondrocytes[J]. J Cell Biochem, 2009, 106(1): 83-92. DOI: 10.1002/jcb.21981

更新日期/Last Update: 2016-05-29