[1]曾玉晓,吴畏,徐海伟,等.氧化石墨烯对人胚胎干细胞诱导的视网膜色素上皮细胞活性的影响[J].第三军医大学学报,2016,38(12):1410-1415.
 Zeng Yuxiao,Wu Wei,Xu Haiwei,et al.Effect of graphene oxide on cell viability of human embryonic stem cells derived retinal pigmental epithelial cells[J].J Third Mil Med Univ,2016,38(12):1410-1415.
点击复制

氧化石墨烯对人胚胎干细胞诱导的视网膜色素上皮细胞活性的影响(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
38卷
期数:
2016年第12期
页码:
1410-1415
栏目:
基础医学
出版日期:
2016-06-30

文章信息/Info

Title:
Effect of graphene oxide on cell viability of human embryonic stem cells derived retinal pigmental epithelial cells
作者:
曾玉晓吴畏徐海伟阴正勤史春梦
第三军医大学:军事预防医学院全军复合伤研究所,创伤、烧伤与复合伤国家重点实验室,西南医院全军眼科中心,视觉损伤与再生修复重庆市重点实验室
Author(s):
Zeng Yuxiao Wu Wei Xu Haiwei Yin Zhengqin Shi Chunmeng

State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory of Visual Damage and Regeneration & Restoration, Department of Ophthalmology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China

关键词:
人胚胎干细胞RPE细胞氧化石墨烯细胞活性
Keywords:
human embryonic stem cells retinal pigmental epithelial cells graphene oxide cell viability
分类号:
R322.91; R392-33; R392.2
文献标志码:
A
摘要:

目的      探索氧化石墨烯(graphene oxide,GO)对人胚胎干细胞(human embryonic stem cell, hESC)诱导的视网膜色素上皮细胞(retinal pigment epithelial,RPE)活性的影响。      方法      hESCs通过自发分化法诱导为RPE细胞,通过免疫荧光法和透射电镜对其进行鉴定后,将hESC-RPE细胞与浓度分别为0、12.5、25、50和100 μg/mL的GO共培养24 h,采用CCK-8试剂盒检测其细胞活力,与浓度为50 μg/mL 的GO共培养24 h,流式细胞仪检测细胞凋亡和细胞内反应性活性氧(reactive oxygen species,ROS)水平。      结果      hESC分化的RPE细胞,呈典型的铺路石样形态,细胞间连接紧密,胞浆富含色素颗粒;免疫荧光检测表达RPE细胞早晚期及紧密连接的标记,并具有吞噬感光外节能力;电镜观察到顶端的微绒毛,细胞呈单层;GO经原子力显微镜检测,说明制备的氧化石墨烯溶液以单层为主;经紫外-可见吸收以及拉曼光谱测试表明石墨经过强氧化之后,其有序的结构遭到破坏,产生了许多缺陷和出现了大量的无序结构;CCK-8细胞活性检测结果显示各组均无统计学差异;细胞凋亡和氧化应激实验中与空白组之间差异没有统计学意义。      结论      GO对于hESC-RPE细胞生物相容性好,提示其有望作为RPE细胞的纳米载体。

Abstract:

Objective      To determine the effect of graphene oxide (GO) on the cell viability of human embryonic stem cells (hESCs)-derived retinal pigmental epithelial (RPE) cells.       Methods      RPE cells were derived from hESCs via natural differentiation. After identification by immunofluorescence assay and transmission electron microscope (TEM), hESCs-derived RPE cells were co-cultured with 0, 12.5, 25, 50 and 100 μg/mL GO for 24 h. Cell viability was tested by CCK-8 kit. Reactive oxygen species (ROS) was tested with DCFH-DA probe.       Results      hESCs-derived RPE cells showed a classical paving-stone shaped morphology with tight connections between the cells and abundant pigment particles in the cytoplasma. Immunofluorescence assay showed that RPE cells expressed the early- and late-stage markers as well as tight junction markers. Besides, RPE cells showed the ability to phagocytize the outer segment of photoreceptors. RPE cells were arranged in a single layer, and the microvilli were observed by TEM. CCK-8 assay showed no significant difference among different groups. ROS had no statistically significant difference among the treatment groups and the control group. With an atomic force microscope, GO solution was proved to be monolayer. The results of ultraviolet-visible spectrophotometry and Raman spectrometry showed that after strong oxidation of graphene, the original ordered structure had been broken, with production of large amount of defect and unordered structure.       Conclusion      GO has considerate biocompatibility with hESCs-derived RPE cells, which implies that GO is the potential nano-carrier for RPE cells.

参考文献/References:

[1]Marchese C, Felici A, Visco V, et al. Fibroblast growth factor 10 induces proliferation and differentiation of human primary cultured keratinocytes[J]. J Invest Dermatol, 2001, 116(4): 623-628. DOI:10.1046/j.0022-202x.2001.01280.x
[2]Binder S, Stanzel B V, Krebs I, et al. Transplantation of RPE in AMD[J]. ProgRetin Eye Res, 2007, 26(5): 516-554. DOI:10.1016/j.preteyeres.2007.02.002
[3]Schwartz S D, Hubschman J P, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report[J]. Lancet, 2012, 379(9817): 713-720. DOI:10.1016/S0140-6736(12)60028-2
[4]Schwartz S D, Regillo C D, Lam B L, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies[J]. Lancet, 2015, 385(9967): 509-516. DOI:10.1016/S0140-6736(14)61376-3
[5]Aryaei A, Jayatissa A H, Jayasuriya A C. The effect of grapheme substrate on osteoblast cell adhesion and proliferation[J]. J Biomed Mater Res A, 2014, 102(9): 3282-3290. DOI: 10.1002/jbm.a.34993
[6]王洁, 刘加强, 房兵, 等. 氧化石墨烯对大鼠骨髓间充质干细胞生物活性的影响[J]. 组织工程与重建外科杂志, 2013, 9(6): 306-310, 314. DOI:10.3969/j.issn.1673-0364.2013.06.002
[7]Wang K, Ruan J, Song H, et al. Biocompatibility of graphemeoxide[J]. Nanoscale Res Lett, 2011, 6(1): 8. DOI: 10.1007/s11671-010-9751-6
[8]Vugler A, Carr A J, Lawrence J, et al. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation[J]. ExpNeurol, 2008, 214(2): 347-361. DOI:10.1016/j.expneurol.2008.09.007
[9]Zhang W, Yan L, Li M, et al. Deciphering the underlying mechanisms of oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells[J]. ToxicolLett, 2015, 237(2): 61-71. DOI:10.1016/j.toxlet.2015.05.021
[10]Hu Y, Liu L, Lu B, et al. A novel approach for subretinal implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium monolayer[J]. Ophthalmic Res, 2012, 48(4): 186-191. DOI:10.1159/000338749
[11]Nishida E, Miyaji H, Takita H, et al. Graphene oxide coating facilitates the bioactivity of scaffold material for tissue engineering[J]. Jpn J Appl Phys,2014,53(6 Suppl): 06JD04. DOI: 10.7567/JJAP.53.06JD04
[12]Yan L, Wang Y, Xu X, et al. Can graphene oxide cause damage to eyesight?[J].Chem Res Toxicol, 2012, 25(6): 1265-1270. DOI:10.1021/tx300129f
[13]Proulx S, Landreville S, Guerin S L, et al. Integrin alpha5 expression by the ARPE-19 cell line: comparison with primary RPE cultures and effect of growth medium on the alpha5 gene promoter strength[J]. ExpEye Res, 2004, 79(2): 157-165. DOI:10.1016/j.exer.2004.03.004
[14]Klimanskaya I, Hipp J, Rezai K A, et al. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics[J]. CloningStem Cells, 2004, 6(3): 217-245. DOI:10.1089/clo.2004.6.217
[15]Ryoo S R, Kim Y K, Kim M H, et al. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies[J]. ACS Nano, 2010, 4(11): 6587-6598. DOI:10.1021/nn1018279
[16]Akhavan O, Ghaderi E, Abouei E, et al. Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets[J]. Carbon, 2014, 66: 395-406. DOI: 10.1016/j.carbon.2013.09.015
[17]Kalbacova M, Broz A, Kong J, et al. Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells[J]. Carbon, 2010, 48(15): 4323-4329. DOI:10.1016/j.carbon.2010.07.045
[18]Strauss O. The retinal pigment epithelium in visual function[J]. Physiol Rev, 2005, 85(3): 845-881. DOI:10.1152/physrev.00021.2004

更新日期/Last Update: 2016-06-07