[1]龙莹,唐帅,冯露,等.负载SDF-1α的温度敏感性水凝胶预防宫腔粘连及促进子宫内膜再生修复的效果[J].第三军医大学学报,2016,38(11):1286-1292.
 Long Ying,Tang Shuai,Feng Lu,et al.Effect of thermosensitive hydrogel containing stromal cell-derived factor-1α on intrauterine adhesion and endometrium regeneration in rabbits[J].J Third Mil Med Univ,2016,38(11):1286-1292.
点击复制

负载SDF-1α的温度敏感性水凝胶预防宫腔粘连及促进子宫内膜再生修复的效果(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
38卷
期数:
2016年第11期
页码:
1286-1292
栏目:
基础医学
出版日期:
2016-06-15

文章信息/Info

Title:
Effect of thermosensitive hydrogel containing stromal cell-derived factor-1α on intrauterine adhesion and endometrium regeneration in rabbits
作者:
龙莹唐帅冯露梁志清
第三军医大学西南医院妇产科
Author(s):
Long Ying Tang Shuai Feng Lu Liang Zhiqing

Department of Gynaecology and Obstetrics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China

关键词:
水凝胶间质干细胞宫腔粘连基质细胞衍生因子-1&alpha
Keywords:
hydrogel mesenchymal stem cells intrauterine adhesion stromal cell-derived factor-1&alpha
分类号:
R318.08;R711.32;R711.74
文献标志码:
A
摘要:

目的      考察负载重组人基质细胞衍生因子-1α(recombinant human stromal cell-derived factor-1 alpha,rhSDF-1α)的温度敏感性水凝胶PLA/PEG三嵌段聚合物(PLA-PEG-PLA,PLEL)对预防宫腔粘连、促进子宫内膜再生修复的效果。      方法      24只成年新西兰雌兔(48条子宫)分为4组(n=12):①自然修复组,纵行剪开子宫全长,剪去子宫内膜,止血后缝合子宫切口;②PLEL治疗组,缝合子宫切口后向宫腔内注射PLEL水凝胶;③PLEL-rhSDF-1α治疗组,缝合子宫切口后向宫腔内注射复合rhSDF-1α的PLEL水凝胶;④假手术组,仅行开腹手术,不处理子宫。分别于术后7 d和28 d取子宫标本,免疫荧光染色观察间质干细胞(mesenchymal stem cells, MSCs)表面标志CD44和CD90的表达,组织学染色观察子宫内膜修复情况。      结果      自然修复组宫腔粘连,无内膜上皮组织再生。与PLEL治疗组比较,PLEL-rhSDF-1α治疗组有大量MSCs归巢至再生内膜组织(P<0.05),再生内膜上皮层周长/基底层周长比值更大(P<0.05),但均不及假手术组(P<0.05)。      结论      温度敏感性PLEL水凝胶复合rhSDF-1α具有预防子宫宫腔粘连、促进子宫内膜再生修复的作用。

Abstract:

Objective      To evaluate the effect of thermosensitive poly(lactic acid)-polyethylene glycol- poly(lactic acid) block polymer (PLEL) hydrogel containing recombinant human stromal cell-derived factor-1α (rhSDF-1α) on preventing intrauterine adhesion and promoting the regeneration of endometrium.       Methods      Twenty-four adult female New Zealand rabbits (48 uteruses) were randomly divided to 4 groups: spontaneous regeneration group (n=12) which was treated by cutting the uterus lengthwise, removing the endometrium with scissors, and then suturing the incision after hemostasis, PLEL treatment group (n=12) which was treated by injecting PLEL hydrogel after suturing the incision, PLEL-rhSDF-1α treatment group (n=12) which was treated by injecting PLEL hydrogel containing rhSDF-1α after suturing the incision, and sham operation group (n=12) which just exposed the uterus via an abdominal midline incision. All the rabbits underwent euthanasia on postoperative 7 and 28 d to get the uterus samples. The expression levels of CD44 and CD90 were determined by immunofluorescence staining, and the regenerative endometrium was observed by immunohistochemical staining.       Results      Epithelial tissue was not regenerated nearly in the spontaneous regeneration group. There were more MSCs homing to the regenerative endometrium in the PLEL-rhSDF-1α treatment group than in the PLEL treatment group (P<0.05), and the ratio of epithelial layer length to basal layer length was larger (P<0.05). But the sham operation group was better than all of them (P<0.05).       Conclusion       Thermosensitive PLEL hydrogel containing rhSDF-1α is effective on preventing intrauterine adhesion and promoting the regeneration of endometrium.

参考文献/References:

[1]Tonguc E A, Var T, Yilmaz N, et al. Intrauterine device or estrogen treatment after hysteroscopic uterine septum resection[J]. Int J Gynaecol Obstet, 2010, 109(3): 226-229. DOI: 10.1016/j.ijgo.2009.12.015
[2]Myers E M, Hurst B S. Comprehensive management of severe Asherman syndrome and amenorrhea[J]Fertil Steril, 2012, 97(1): 160-164. DOI: 10.1016/j.fertnstert.2011. 10.036
[3]Gargett C E, Ye L. Endometrial reconstruction from stem cells[J]. Fertil Steril, 2012, 98(1): 11-20. DOI: 10.1016/ j.fertnstert.2012.05.004
[4]Jeong B, Kim S W, Bae Y H. Thermosensitive sol-gel reversible hydrogels[J]. Adv Drug Deliv Rev, 2002, 54(1): 37-51.
[5]Honczarenko M, Le Y, Swierkowski M, et al. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors[J]. Stem Cells, 2006, 24(4): 1030-1041. DOI: 10.1634/stemcells.2005-0319
[6]Vagima Y, Lapid K, Kollet O, et al. Pathways implicated in stem cell migration: the SDF-1/CXCR4 axis[J]. Methods Mol Biol, 2011, 750: 277-289. DOI: 10.1007/978-1- 61779-145-1_19
[7]Tsuzuki T, Okada H, Cho H, et al. Hypoxic stress simultaneously stimulates vascular endothelial growth factor via hypoxia-inducible factor-1α and inhibits stromal cell-derived factor-1 in human endometrial stromal cells[J]. Hum Reprod, 2012, 27(2): 523-530. DOI: 10.1093/ humrep/der405
[8]Thevenot P T, Nair A M, Shen J, et al. The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response[J]. Biomaterials, 2010, 31(14): 3997-4008. DOI: 10.1016/ j.biomaterials.2010.01.144
[9]Lau T T, Wang D A. Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine[J]. Expert Opin Biol Ther, 2011, 11(2): 189-197. DOI: 10.1517/14712598.2011.546338
[10]Ji W, Yang F, Ma J, et al. Incorporation of stromal cell-derived factor-1α in PCL/gelatin electrospun membranes for guided bone regeneration[J]. Biomaterials, 2013, 34(3): 735-745. DOI: 10.1016/j.biomaterials. 2012.10.016
[11]Gong C Y, Dong P W, Shi S, et al. Thermosensitive PEG-PCL-PEG hydrogel controlled drug delivery system: sol-gel-sol transition and in vitro drug release study[J]. J Pharm Sci, 2009, 98(10): 3707-3717. DOI: 10.1002/jps.21694
[12]Shen W, Chen X, Chen J, et al. The effect of incorporation of exogenous stromal cell-derived factor-1 alpha within a knitted silk-collagen sponge scaffold on tendon regeneration[J]. Biomaterials, 2010, 31(28): 7239-7249. DOI: 10.1016/j.biomaterials.2010.05.040
[13]Zhang W, Chen J, Tao J, et al. The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair[J]. Biomaterials, 2013, 34(3): 713-723. DOI: 10.1016/j.biomaterials.2012.10.027
[14]Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction[J]. Nat Med, 2006, 12(4): 459-465. DOI: 10.1038/nm1391
[15]Min J Y, Sullivan M F, Yang Y, et al. Significant improvement of heart function by cotransplantation of human mesenchymal stem cells and fetal cardiomyocytes in postinfarcted pigs[J]. Ann Thorac Surg, 2002, 74(5): 1568-1575.
[16]Kinnaird T, Stabile E, Burnett M S, et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms[J]. Circ Res, 2004, 94(5): 678-685. DOI: 10.1161/01.RES. 0000118601.37875.AC
[17]Lai R C, Yeo R W, Lim S K. Mesenchymal stem cell exosomes[J]. Semin Cell Dev Biol, 2015, 40: 82-88. DOI: 10.1016/j.semcdb.2015.03.001
[18]Glenn J D, Whartenby K A. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy[J]. World J Stem Cells, 2014, 6(5): 526-539. DOI: 10.4252/wjsc.v6.i5.526
[19]Kilic S, Yuksel B, Pinarli F, et al. Effect of stem cell application on Asherman syndrome, an experimental rat model[J]. J Assist Reprod Genet, 2014, 31(8): 975-982. DOI: 10.1007/s10815-014-0268-2
[20]Ding L, Li X, Sun H, et al. Transplantation of bone marrow mesenchymal stem cells on collagen scaffolds for the functional regeneration of injured rat uterus[J]. Biomaterials, 2014, 35(18): 4888-4900. DOI: 10.1016/ j.biomaterials.2014.02.046

相似文献/References:

[1]周维,谢肇,许建中.miR-125b调节C3H10T1/2间充质干细胞中Cbfβ的表达[J].第三军医大学学报,2012,34(11):1048.
 Zhou Wei,Xie Zhao,Xu Jianzhong.Effect of miR-125b on expression of Cbfβ in C3H10T1/2 cells[J].J Third Mil Med Univ,2012,34(11):1048.

更新日期/Last Update: 2016-05-29