[1]胡建红,王超,吴丹,等.重度烧伤鼠肠上皮细胞及其刷状缘谷氨酰胺转运的变化[J].第三军医大学学报,2016,38(08):800-804.
 Hu Jianhong,Wang Chao,Wu Dan,et al.Alterations of glutamine transport in intestinal epithelial cells and brush border membrane in rats after severe burn injury[J].J Third Mil Med Univ,2016,38(08):800-804.
点击复制

重度烧伤鼠肠上皮细胞及其刷状缘谷氨酰胺转运的变化(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
38卷
期数:
2016年第08期
页码:
800-804
栏目:
基础医学
出版日期:
2016-04-30

文章信息/Info

Title:
Alterations of glutamine transport in intestinal epithelial cells and brush border membrane  in rats after severe burn injury
作者:
胡建红王超吴丹彭曦
第三军医大学西南医院全军烧伤研究所,创伤、烧伤与复合伤国家重点实验室
Author(s):
Hu Jianhong Wang Chao Wu Dan Peng Xi

State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burns, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China

关键词:
烧伤谷氨酰胺肠上皮刷状缘膜囊泡小肠上皮细胞大鼠
Keywords:
burn glutamine brush border membrane vesicles intestinal epithelial cells rat
分类号:
R322.45;R362;R644.02
文献标志码:
A
摘要:

目的      探讨烧伤后肠上皮细胞及其刷状缘谷氨酰胺(glutamine,Gln)转运变化规律。      方法      将40只Sprague-Dawley大鼠随机分为正常对照组(8只)、烧伤组(烧伤后1、3、5、7 d,每个时相点8只)。正常对照组只麻醉和剃毛,不予烧伤;烧伤组给予90 ℃水烫伤18 s,造成30%体表面积Ⅲ度烧伤。2组给予正常饮食及饮水。联合应用胶原酶Ⅸ和中性蛋白酶Ⅰ消化法提取大鼠小肠上皮细胞(intestinal epithelial cells,IEC),采用Mg2+差速离心法制备大鼠小肠刷状缘膜囊泡(brush border membrane vesicles, BBMV),检测进入BBMV及IEC中的[3H]-Gln的放射性强度,观察伤前及烧伤后1、3、5、7 d大鼠肠道BBMV及IEC中Gln转运速率的变化。      结果      采用Mg2+差速离心法成功提取大鼠肠上皮BBMV。发现肠上皮细胞中Na+依赖性Gln转运主要依靠BBMV,大约占总量的60%;烧伤第1天BBMV中Gln转运效率明显下降(P<0.05,P<0.01),伤后3~7 d有所增高,但差异无统计学意义(P>0.05)。IEC中Na+依赖性Gln转运变化不明显,而非Na+依赖性Gln转运则有逐步增高的趋势,在伤后7 d明显高于对照组(P<0.05)。      结论      肠上皮细胞对Gln的转运主要依靠BBMV中Na+依赖性转运,烧伤后BBMV转运Gln的能力先降低后增高,而IEC对非Na+依赖性Gln转运则呈逐步增高的趋势。

Abstract:

Objective      To investigate the change of glutamine (Gln) transport in intestinal epithelial cells (IEC) and brush border membrane vesicles (BBMV) in rats after burn injury.       Methods      Forty Sprague-Dawley rats were randomly divided into normal control (C) group and burn injury (B) group. The rats in the C group only received anaesthesia and shaving. The rats in the B group were inflicted with 30% body surface area of full thickness burn by soaking in 90 ℃ water for 18 s. IEC was separated by digestion with collagenase Ⅸ and dispaseⅠ, and BBMV was prepared by magnesium precipitation. The transport rate of [3H]-Gln into BBMV and IEC was quantitatively detected by radioactivity count per minute (CPM) assay to observe the change of Gln transport rate before burn and on postburn day (PBD) 1, PBD3, PBD5 and PBD7.        Results      BBMV was successfully extracted from the rats by magnesium ion differential centrifugation. It was discovered that Na+-dependent Gln transport in IEC mainly relied on the BBMV, accounting for about 60% of the total. Compared with the C group, the Gln transport rate in BBMV was slightly increased in the B group (P>0.05) after burn injury except remarkable decrease on PBD1 (P<0.01, P<0.05). The change of Na+-dependent Gln transport in IEC was not significant (P>0.05), but Na+-independent Gln transport in IEC showed a rising trend and significantly increased on PBD7 (P<0.05).       Conclusion      Gln transport in intestinal epithelial cells rely mainly on Na+ dependent transport in BBMV. The overall trend of Gln transport in BBMV is firstly decreased and then increased after burn, while that in IEC shows a gradually increasing trend.

参考文献/References:

[1]Oliveira G P, Dias C M, Pelosi P, et al. Understanding the mechanisms of glutamine action in critically ill patients[J]. An Acad Bras Cienc, 2010, 82(2): 417-430.
[2]Windmueller H G, Spaeth A E. Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood[J]. Arch Biochem Biophys, 1975, 171(2): 662-672.
[3]Choudry H A, Souba W W, Lin C, et al. Stimulation of expression of the intestinal glutamine transporter ATB0 in tumor-bearing rats[J]. Ann Surg Oncol, 2006, 13(12): 1747-1753.
[4]McGivan J D, Bungard C I. The transport of glutamine into mammalian cells[J]. Front Biosci, 2007, 12: 874-882.
[5]Avissar N E, Sax H C, Toia L. In human entrocytes, GLN transport and ASCT2 surface expression induced by short-term EGF are MAPK, PI3K, and Rho-dependent[J]. Dig Dis Sci, 2008, 53(8): 2113-2125.
[6]Niu L, Qiao W, Li G, et al. Different alterations in rat intestinal glutamine transport during the progression of CLP- and LPS-induced sepsis[J]. J Surg Res, 2011, 169(2): 284-291. DOI: 10.1016/j.jss.2009.11.732
[7]Niu L, Qiao W, Hu Z, et al. Berberine attenuates lipopolysaccharide-induced impairments of intestinal glutamine transport and glutaminase activity in rat[J]. Fitoterapia, 2011, 82(3): 323-330. DOI: 10.1016/j.fitote.2010.11.007
[8]Saha P, Arthur S, Kekuda R, et al. Na-glutamine co-transporters B(0)AT1 in villus and SN2 in crypts are differentially altered in chronically inflamed rabbit intestine[J]. Biochim Biophys Acta, 2012, 1818(3): 434-442. DOI: 10.1016/j.bbamem.2011.11.005
[9]Ray E C, Avissar N E, Salloum R, et al. Growth hormone and epidermal growth factor upregulate specific sodium-dependent glutamine uptake systems in human intestinal C2BBe1 cells[J]. J Nutr, 2005, 135(1): 14-18.
[10]Sundaram U, West A B. Effect of chronic inflammation on electrolyte transport in rabbit ileal villus and crypt cells[J]. Am J Physiol, 1997, 272(4 Pt 1): G732-G741.
[11]Cheeseman C I, O’Neill D. Isolation of intestinal brush-border membranes[J]. Curr Protoc Cell Biol, 2006, Chapter 3: Unit 3.21. DOI: 10.1002/0471143030.cb0321s30
[12]Aledo J C. Glutamine breakdown in rapidly dividing cells: waste or investment[J]. Bioessays, 2004, 26(7): 778-785.
[13]Bode B P. Recent molecular advances in mammalian glutamine transport[J]. J Nutr, 2001, 131(9 Suppl): 2475S-2487S.
[14]Boge G, Roche H, Balocco C. Amino acid transport by intestinal brush border vesicles of a marine fish, Boops salpa[J]. Comp Biochem Physiol B Biochem Mol Biol, 2002, 131(1): 19-26.
[15]Broer S. Amino acid transport across mammalian intestinal and renal epithelia[J]. Physiol Rev, 2008, 88(1): 249-286. DOI: 10.1152/physrev.00018.2006
[16]Hyde R, Taylor P M, Hundal H S. Amino acid transporters: roles in amino acid sensing and signalling in animal cells[J]. Biochem J, 2003, 373(Pt 1): 1-18.
[17]Farina J A Jr, Rosique M J, Rosique R G. Curbing inflammation in burn patients[J]. Int J Inflam, 2013, 2013: 715645. DOI: 10.1155/2013/715645
[18]Fairweather S J, Broer A, O’Mara M L, et al. Intestinal peptidases form functional complexes with the neutral amino acid transporter B(0)AT1[J]. Biochem J, 2012, 446(1): 135-148. DOI: 10.1042/BJ20120307
[19]Karinch A M, Pan M, Lin C M, et al. Glutamine metabolism in sepsis and infection[J]. J Nutr, 2001, 131(9 Suppl): 2535S-2538S, 2550S-2551S.
[20]Diao L, Marshall A H, Dai X, et al. Burn plus lipopolysaccharide augments endoplasmic reticulum stress and NLRP3 inflammasome activation and reduces PGC-1α in liver[J]. Shock, 2014, 41(2): 138-144. DOI: 10.1097/SHK.0000000000000075

相似文献/References:

[1]王立媛,杨贺庆,安友仲.联合应用谷氨酰胺和L-精氨酸对饥饿大鼠肠屏障作用的影响[J].第三军医大学学报,2008,30(03):272.
[2]许永庆,戴朝六,崔凯,等.谷氨酰胺在肝脏缺血再灌注损伤中对肠道黏膜保护作用[J].第三军医大学学报,2007,29(11):1050.
 XU Yong-qing,DAI Chao-liu,CUI Kai,et al.Protective effect of glutamine on intestinal mucosa during hepatic ischemia/reperfusion injury in rats[J].J Third Mil Med Univ,2007,29(08):1050.
[3]王伟强,任成山.谷氨酰胺对急性肝损伤的保护作用及临床意义[J].第三军医大学学报,2006,28(11):1184.
[4]汤建林,周世文,应懿,等.谷氨酰胺人体生物等效性评价研究[J].第三军医大学学报,2005,27(11):1165.
[5]王彦,赵英男,许莹平,等.谷氨酰胺对脂多糖诱导大鼠血管平滑肌细胞增殖的影响[J].第三军医大学学报,2010,32(02):191.
[6]牟东,薛世祥,代剑华,等.谷氨酰胺联合维生素C对军事训练中暑及内毒素血症的预防作用及机制研究[J].第三军医大学学报,2010,32(23):2503.
 Mu Dong,Xue Shixiang,Dai Jianhua,et al.Preventive effect of combined glutamine and vitamin C on heat apoplexy and endotoxemia in military training and its mechanism[J].J Third Mil Med Univ,2010,32(08):2503.
[7]朱文艺,杜珊珊,何佳霖,等.不同营养支持途径补充谷氨酰胺对重症急性胰腺炎患者血清蛋白水平的叠加效应[J].第三军医大学学报,2016,38(03):284.
 Zhu Wenyi,Du Shanshan,He Jialin,et al.Superimposed effect of glutamine supplementation by different pathways on serum albumin in severe acute pancreatitis patients[J].J Third Mil Med Univ,2016,38(08):284.
[8]刘光艺,朱继芳,李洋.谷氨酰胺对肝移植大鼠肠黏膜NF-κB、ICAM-1、TNF-α表达的影响[J].第三军医大学学报,2013,35(12):1205.
 Liu Guangyi,Zhu Jifang,Li Yang.Effect of glutamine on expression of NF-κB,ICAM-1 and TNF-α in intestinal mucosa after liver transplantation in rats[J].J Third Mil Med Univ,2013,35(08):1205.
[9]薛世祥,牟东,代剑华,等.谷氨酰胺联合维生素C对热应激致大鼠肠源性内毒素血症的预防作用[J].第三军医大学学报,2011,33(17):1779.
 Xue Shixiang,Mu Dong,Dai Jianhua,et al.Preventive effect of glutamine combined with vitamin C on intestinal endotoxemia induced by heat stress in rats[J].J Third Mil Med Univ,2011,33(08):1779.
[10]彭曦,陈蓉春,王裴,等.谷氨酰胺对烧伤大鼠肠三叶因子表达的影响[J].第三军医大学学报,2004,26(03):0.[doi:10.16016/j.1000-5404.2004.03.008 ]
 PENG Xi,CHEN Rong chun,WANG Pei,et al.[J].J Third Mil Med Univ,2004,26(08):0.[doi:10.16016/j.1000-5404.2004.03.008 ]

更新日期/Last Update: 2016-04-18