[1]阳孟君,王洛夫,郭燕丽,等.携载G250单克隆抗体的纳米微泡靶向于肾细胞癌的体内外实验研究[J].第三军医大学学报,2016,38(02):112-118.
 Yang Mengjun,Wang Luofu,Guo Yanli,et al.In vivo and in vitro study of nanoscale microbubbles with G250 monoclonal antibodies targeting to renal cell carcinoma[J].J Third Mil Med Univ,2016,38(02):112-118.
点击复制

携载G250单克隆抗体的纳米微泡靶向于肾细胞癌的体内外实验研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
38卷
期数:
2016年第02期
页码:
112-118
栏目:
基础医学
出版日期:
2016-01-30

文章信息/Info

Title:
In vivo and in vitro study of nanoscale microbubbles with G250 monoclonal antibodies targeting to renal cell carcinoma
作者:
阳孟君王洛夫郭燕丽范校周钟华兰卫华江军张克勤
第三军医大学大坪医院野战外科研究所泌尿外科;第三军医大学西南医院超声科
Author(s):
Yang Mengjun Wang Luofu Guo Yanli Fan Xiaozhou Zhong Hua Lan Weihua Jiang Jun Zhang Keqin

Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042; Department of ultrasonography, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China

关键词:
纳米微泡超声增强显影技术肾细胞癌单克隆抗体
Keywords:
nanoscale microbubbles G250 contrast-enhanced ultrasound imaging renal cell carcinoma monoclonal antibodies
分类号:
R392.11;R445.1;R737.11
文献标志码:
A
摘要:

目的       本研究拟制备携载G250单克隆抗体的纳米微泡,在体内和体外研究其对肾细胞癌的靶向性。       方法       机械振荡法制备空白脂质纳米微泡并观察其稳定性,生物素-亲和素连接技术将纳米微泡与G250单克隆抗体相连,采用免疫荧光进行验证。细胞免疫荧光实验鉴定所使用的两种肾细胞癌细胞(786-O和ACHN细胞)中G250的表达情况,靶向结合实验鉴别靶向纳米微泡对786-O和ACHN两种肾细胞癌细胞的体外寻靶能力。在肾细胞癌的裸鼠皮下移植瘤模型中,使用纳米微泡进行超声造影,并将采集到的动态图像在定量分析软件Qlab 8.1中进行数据分析。       结果       成功制备了平均粒径为404.9 nm空白纳米微泡和平均粒径为611.4 nm靶向纳米微泡,稳定性能好,同时免疫荧光证实了靶向纳米微泡构建成功,能够与FITC标记的二抗结合,从而显示出绿色荧光;细胞免疫荧光证实G250抗原在786-O细胞中呈膜表达,而ACHN细胞中不表达。在细胞结合实验中发现靶向纳米微泡能够特异性的结合786-O细胞,但不能结合于ACHN细胞。体内超声造影显像从平均值和最大值分析,靶向纳米微泡和空白微泡在786-O肾细胞癌细胞的裸鼠模型的显影效果存在显著差异[平均值:(11.74±0.52) vs  (16.34±0.40),P=0.001;最大值:(13.07±0.94) vs (18.09±0.82),P=0.003]。       结论       G250靶向的纳米微泡可在体外能够特异性的结合G250表达阳性的肾细胞癌细胞,在动物体内能够明显的增强移植瘤的超声显影效果。

Abstract:

Objective       To prepare targeted nanoscale microbubbles (NBs) with G250 monoclonal antibodies targeting renal cell carcinoma (RCC), and explore its targeting ability to RCC in vitro and in vivo.        Methods       Mechanical oscillation method was used for preparing blank NBs and its stability was observed. Targeted NBs was prepared by biotin-avidin linking technology and verified by immunofluorescence assay. The expression of G250 in 2 kinds of RCC cells (786-O and ACHN) was identified by immunofluorescence assay. Targeting ability of the 2 kinds of NBs in vitro was identified by target binding assay. In the nude mice model of RCC, contrast-enhanced ultrasound imaging was used for imaging the 2 kinds of NBs, and the dynamic images were collected and analyzed in the quantitative analysis software Qlab 8.1.        Results       The blank NBs and targeted NBs in average particle sizes of 404.9 nm and 611.4 nm, respectively, were successfully prepared, and with good stability. The targeted NBs were labeled with FITC, thus showing green fluorescence. Immunofluorescence assay confirmed that membrane antigen G250 was expressed in 786-O cells, but not expressed in ACHN cells. In the cell binding experiment, it was found that the targeted NBs were able to specifically bind to 786-O cells, but unable to bind to ACHN cells. In vivo ultrasound contrast imaging showed that the mean value and maximum value of the blank NBs and targeted NBs in 786-O cells were significantly different from those in ACHN cells in the nude mice model (average mean: 11.74±0.52 vs 16.34±0.40, P=0.001; maximum value: 13.07±0.94 vs 18.09±0.82, P=0.003).        Conclusion       The prepared targeted NBs targeting G250 can specially bind to 786-O cells in vitro, and significantly enhance the ultrasound imaging effect in vivo.

参考文献/References:

[1]Nishikawa M, Miyake H, Kitajima K, et al. Preoperative differentiation between benign and malignant renal masses smaller than 4 cm treated with partial nephrectomy[J]. Int J Clin Oncol, 2015, 20(1): 150-155. DOI:10.1007/s10147-014-0673-7
[2]Tong H P, Wang L F, Guo Y L, et al. Preparation of protamine cationic nanobubbles and experimental study of their physical properties and in vivo contrast enhancement[J]. Ultrasound Med Biol, 2013, 39(11): 2147-2157. DOI:10.1016/j.ultrasmedbio.2013.05.016
[3]Wang L, Li L, Guo Y, et al. Construction and in vitro/in vivo targeting of PSMA-targeted nanoscale microbubbles in prostate cancer[J]. Prostate, 2013, 73(11): 1147-1158. DOI:10.1002/pros.22663
[4]Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014[J]. CA Cancer J Clin, 2014, 64(1): 9-29. DOI:10.3322/caac.21208
[5]Znaor A, Lortet-Tieulent J, Laversanne M, et al. International variations and trends in renal cell carcinoma incidence and mortality[J]. Eur Urol, 2015, 67(3): 519-530. DOI:10.1016/j.eururo.2014.10.002
[6]Ridge C A, Pua B B, Madoff D C. Epidemiology and staging of renal cell carcinoma[J]. Semin Intervent Radiol, 2014, 31(1): 3-8. DOI:10.1055/s-0033-1363837 
[7]Hamilton A, Huang S L, Warnick D, et al. Left ventricular thrombus enhancement after intravenous injection of echogenic immunoliposomes: studies in a new experimental model[J]. Circulation, 2002, 105(23): 2772-2778.
[8]Liu Y, Davidson B P, Yue Q, et al. Molecular imaging of inflammation and platelet adhesion in advanced atherosclerosis effects of antioxidant therapy with NADPH oxidase inhibition[J]. Circ Cardiovasc Imaging, 2013, 6(1): 74-82. DOI:10.1161/CIRCIMAGING.112.975193 
[9]Frenkel V. Ultrasound mediated delivery of drugs and genes to solid tumors[J]. Adv Drug Deliv Rev, 2008, 60(10): 1193-1208.
[10]Danila M, Popescu A, Sirli R, et al. Contrast enhanced ultrasound (CEUS) in the evaluation of liver metastases[J]. Med Ultrason, 2010, 12(3): 233-237.
[11]Cavalieri F, Zhou M, Ashokkumar M. The design of multifunctional microbubbles for ultrasound image-guided cancer therapy[J]. Curr Top Med Chem, 2010, 10(12): 1198-1210.
[12]Xing Z, Wang J, Ke H, et al. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging[J]. Nanotechnology, 2010, 21(14): 145607. DOI:10.1088/0957-4484/21/14/145607
[13]Burcu-Bahadir E, Kemal-Sezginturk M. Applications of electrochemical immunosensors for early clinical diagnostics[J]. Talanta, 2015, 132: 162-174. DOI:10.1016/j.talanta.2014.08.063
[14]Soler M, Mesa-Antunez P, Estevez M C, et al. Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis[J]. Biosens Bioelectron, 2015, 66: 115-123. DOI:10.1016/j.bios.2014.10.081
[15]Chang K, Deng S, Chen M. Novel biosensing methodologies for improving the detection of single nucleotide polymorphism[J]. Biosens Bioelectron, 2015, 66: 297-307. DOI:10.1016/j.bios.2014.11.041
[16]Zha Z, Wang S, Zhang S, et al. Targeted delivery of CuS nanoparticles through ultrasound image-guided microbubble destruction for efficient photothermal therapy[J]. Nanoscale, 2013, 5(8): 3216-3219. DOI:10.1039/c3nr00541k
[17]Wu H, Rognin N G, Krupka T M, et al. Acoustic characterization and pharmacokinetic analyses of new nanobubble ultrasound contrast agents[J]. Ultrasound Med Biol, 2013, 39(11): 2137-2146. DOI:10.1016/j.ultrasmedbio.2013.05.007 
[18]Deng L, Li L, Yang H, et al. Development and optimization of doxorubicin loaded poly(lactic-co-glycolic acid) nanobubbles for drug delivery into HeLa cells[J]. J Nanosci Nanotechnol, 2014, 14(4): 2947-2954.
[19]Oosterwijk-Wakka J C, Boerman O C, Mulders P F, et al. Application of monoclonal antibody G250 recognizing carbonic anhydrase IX in renal cell carcinoma[J]. Int J Mol Sci, 2013, 14(6): 11402-11423.
[20]Grabmaier K, A-de-Weijert M C, Verhaegh G W, et al. Strict regulation of CAIX(G250/MN) by HIF-1alpha in clear cell renal cell carcinoma[J]. Oncogene, 2004, 23(33): 5624-5631.
[21]Oosterwijk E, Ruiter D J, Hoedemaeker P J, et al. Monoclonal antibody G250 recognizes a determinant present in renal-cell carcinoma and absent from normal kidney[J]. Int J Cancer, 1986, 38(4): 489-494.
[22]Li J W, Gong J Y, Li K, et al. Construction of a fusion expression plasmid containing the G250 gene and human granulocyte-macrophage colony stimulating factor and its significance in renal cell carcinoma[J]. Oncol Lett, 2011, 2(2): 343-347. DOI:10.3892/ol.2010.230 
[23]Fan X, Wang L, Guo Y, et al. Experimental investigation of the penetration of ultrasound nanobubbles in a gastric cancer xenograft[J]. Nanotechnology, 2013, 24(32): 325102. DOI:10.1088/0957-4484/24/32/325102

更新日期/Last Update: 2016-01-14