[1]邹璨,郝磊,田洪,等.慢性脑低灌注后失交感神经支配对脑动脉生成的影响[J].第三军医大学学报,2015,37(18):1818-1822.
 Zou Can,Hao Lei,Tian Hong,et al.Sympathetic denervation impairs cerebral arteriogenesis after chronic cerebral hypoperfusion in rats[J].J Third Mil Med Univ,2015,37(18):1818-1822.
点击复制

慢性脑低灌注后失交感神经支配对脑动脉生成的影响(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
37卷
期数:
2015年第18期
页码:
1818-1822
栏目:
论著
出版日期:
2015-09-30

文章信息/Info

Title:
Sympathetic denervation impairs cerebral arteriogenesis after chronic cerebral hypoperfusion in rats
作者:
邹璨郝磊田洪刘磊
第三军医大学研究生管理大队;解放军第324医院神经内科
Author(s):
Zou Can Hao Lei Tian Hong Liu Lei

Postgraduate Team, Third Military Medical University, Chongqing, 400038; Department of Neurology, No. 324 Hospital of PLA, Chongqing, 400020, China

关键词:
慢性脑低灌注脑动脉生成交感神经失交感神经支配
Keywords:
chronic cerebral hypoperfusion cerebral arteriogenesis sympathetic nerve sympathetic denervation
分类号:
R364.33;R743.31;R745.1
文献标志码:
A
摘要:

目的      探讨在慢性脑低灌注情况下,失交感神经支配对脑动脉生成的影响。      方法      通过结扎右侧颈总动脉8周建立慢性脑低灌注模型,外科手术法去除同侧颈上交感神经节。将84只健康的成年雄性SD大鼠用随机数字表法分为动脉结扎+去神经组(联合组)、动脉结扎组、去神经组和假手术组(每组21只)。术后8周,将每组动物随机分成A、B、C 3个亚组(每组7只),分别行乳胶灌注、大脑中动脉永久性阻塞以及免疫组化染色。      结果      联合组右侧软脑膜吻合支直径明显小于动脉结扎组,大于去神经组和假手术组(P<0.05);联合组右侧Willis动脉环直径明显小于动脉结扎组(P<0.05);免疫组化染色结果显示,联合组右侧软脑膜吻合支管壁厚度小于动脉结扎组(P<0.05);8周后行永久性大脑中动脉阻塞实验,联合组显示大脑中动脉区的脑血流值与基线值的比值小于动脉结扎组(P<0.05);神经行为学评分结果显示联合组评分高于动脉结扎组(P<0.05);同时TTC染色显示联合组脑梗死体积百分率大于动脉结扎组(P<0.05)。      结论      脑血管失交感神经支配损害了慢性脑低灌注时的脑动脉生成。

Abstract:

Objective      To determine the effect of sympathetic denervation on cerebral arteriogenesis in rat model of chronic cerebral hypoperfusion and investigate the underlying possible mechanism.        Methods      The SD rat model of chronic cerebral hypoperfusion was established by right common carotid artery ligation for 8 weeks, while denervation was performed by surgical removal of the ipsilateral superior cervical sympathetic ganglion. A total of 84 healthy adult male SD rats were randomly divided into 4 groups, that is, model and denervation group (n=21), artery ligation group (n=21), denervation group (n=21) and sham-operation group (n=21). In 8 weeks after surgery, the rats in each group were further randomly assigned into 3 sub-groups, that is, sub-group A (n=7), sub-group B (n=7), and sub-group C (n=7). The diameter of leptomeningeal collateral vessels and Willis circle artery were observed in sub-group A after latex perfusion; the rats in sub-group B were subjected to permanent right middle cerebral artery occlusion. Cortical cerebral blood flow was measured. Cerebral infarct volume was tested by TTC staining in 24 h post-operatively. Immunohistochemical staining was carried out in sub-group C to observe the structural changes of the right leptomeningeal collateral vessels.        Results      The diameters of right leptomeningeal collateral vessels and Willis circle artery were both significantly smaller in the model and denervation group than the artery ligation group (P<0.05), and obviously larger than in the denervation group (P<0.05) and sham-operation group (P<0.05). Immunohistochemical staining showed the thickness of right leptomeningeal collateral vessels was obviously decreased in the model and denervation group compared with the artery ligation group (P<0.05), but remarkably increased than the denervation group (P<0.05) and the sham-operation group (P<0.05). In 8 weeks after permanent right middle cerebral artery occlusion, the ratio of cerebral blood flow to basic level was significantly lower in the model and denervation group than the artery ligation group (P<0.05), but markedly higher than in the denervation group (P<0.05) and the sham-operation group (P<0.05). Neurological function scoring indicated that scores were significantly higher in the model and denervation group than the artery ligation group (P<0.05), but obviously lower than in the denervation group (P<0.05) and the sham-operation group (P<0.05). TTC staining showed the cerebral infarct volume was significantly larger in the model and denervation group than the artery ligation group (P<0.05), and remarkably smaller than in the denervation group (P<0.05) and the sham-operation group (P<0.05).         Conclusion      Sympathetic denervation impairs the cerebral arteriogenesis in rats with chronic cerebral hypoperfusion.

参考文献/References:

[1]Ohtaki H, Fujimoto T, Sato T, et al. Progressive expression of vascular endothelial growth factor (VEGF) and angiogenesis after chronic ischemic hypoperfusion in rat[J]. Acta Neurochir Suppl, 2006, 96: 283-287.
[2]Troidl K, Schaper W. Arteriogenesis versus angiogenesis in peripheral artery disease[J]. Diabetes Metab Res Rev, 2012, 28 Suppl 1: 27-29.
[3]Luo M Y, Yang B L, Ye F, et al. Collateral vessel growth induced by femoral artery ligature is impaired by denervation[J]. Mol Cell Biochem, 2011, 354(1/2): 219-229.
[4]Omura-Matsuoka E, Yagita Y, Sasaki T, et al. Hypertension impairs leptomeningeal collateral growth after common carotid artery occlusion: restoration by antihypertensive treatment[J]. J Neurosci Res, 2011, 89(1): 108-116.
[5]Duelsner A, Gatzke N, Persson A B, et al. Induction of cerebral arteriogenesis in mice[J]. Methods Mol Biol, 2014, 1135: 121-125.
[6]Savastano L E, Castro A E, Fitt M R, et al. A standardized surgical technique for rat superior cervical ganglionectomy[J]. J Neurosci Methods, 2010, 192(1): 22-33.
[7]Li W, Prakash R, Kelly-Cobbs A I, et al. Adaptive cerebral neovascularization in a model of type 2 diabetes: relevance to focal cerebral ischemia[J]. Diabetes, 2010, 59(1): 228-235.
[8]Sugiyama Y, Yagita Y, Oyama N, et al. Granulocyte colony-stimulating factor enhances arteriogenesis and ameliorates cerebral damage in a mouse model of ischemic stroke[J]. Stroke, 2011, 42(3): 770-775.
[9]Todo K, Kitagawa K, Sasaki T, et al. Granulocyte-macrophage colony-stimulating factor enhances leptomeningeal collateral growth induced by common carotid artery occlusion[J]. Stroke, 2008, 39(6): 1875-1882.
[10]何敏, 韩江全, 李向荣. 改良法制作SD大鼠大脑中动脉栓塞永久模型[J]. 当代医学, 2008(18): 1-3.
[11]Buschmann I, Schaper W. Arteriogenesis Versus Angiogenesis: Two Mechanisms of Vessel Growth[J]. News Physiol Sci, 1999, 14: 121-125.
[12]Rolland P H, Bruzzese L. Manipulating arterial fluid-shear stress and arteriogenesis in the brain[J]. Eur J Vasc Endovasc Surg, 2011, 41(5): 597-598.
[13]Duelsner A, Gatzke N, Glaser J, et al. Granulocyte colony-stimulating factor improves cerebrovascular reserve capacity by enhancing collateral growth in the circle of Willis[J]. Cerebrovasc Dis, 2012, 33(5): 419- 429.
[14]Ruohonen S T, Abe K, Kero M, et al. Sympathetic nervous system-targeted neuropeptide Y overexpression in mice enhances neointimal formation in response to vascular injury[J]. Peptides, 2009, 30(4): 715-720.
[15]Sherline P, Mascardo R. Catecholamines are mitogenic in 3T3 and bovine aortic endothelial cells[J]. J Clin Invest, 1984, 74(2): 483-487.
[16]Hao L, Zou Z, Tian H, et al. Novel roles of perivascular nerves on neovascularization[J]. Neurol Sci, 2015, 36(3): 353-360.

更新日期/Last Update: 2015-09-07