[1]石小花,张一鸣,周鑫,等.硅橡胶的表面性能与细菌黏附的关系[J].第三军医大学学报,2015,37(19 ):1921-1925.
 Shi Xiaohua,Zhang Yiming,Zhou Xin,et al.Relationship of surface properties of silicone rubber with bacteria adhesion[J].J Third Mil Med Univ,2015,37(19 ):1921-1925.

硅橡胶的表面性能与细菌黏附的关系(/HTML )




Relationship of surface properties of silicone rubber with bacteria adhesion
Shi Xiaohua Zhang Yiming Zhou Xin Chen Xing Fan Dongli

Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China

biomaterials infectionbacterial adhesionsurface propertieshydrophilicity/hydrophobicity
R312; R318.08; R62

目的      研究硅橡胶的表面性能变化对细菌黏附的影响。      方法      采用细菌培养和菌落技术对普通硅橡胶(silicon rubber,SR)、碳-硅橡胶(carbon ion implanted silicon rubber, C-SR)和羟基磷灰石涂层硅橡胶(hydroxyapatite coating silicone rubber, HA/SR)表面细菌黏附情况进行分析,通过扫描电镜(scanning electron microscope,SEM)对材料表面的形貌进行观察,采用X射线光电子能谱仪(X-ray photoelectron spectroscopy,XPS)、X射线衍射光谱仪(XRD)、傅里叶红外光谱仪(Fourier transform infrared spectrometer,FTIR)对材料表面的分子结构进行分析,同时对材料表面的粗糙度以及亲/疏水性(水接触角)进行检测。      结果      普通硅橡胶(SR)表面细菌黏附最多[(2.11±0.12)×105CFU],羟基磷灰石涂层硅橡胶(hydroxyapatite coating silicone rubber, HA/SR)次之[(1.88±0.88)×105CFU],碳-硅橡胶(carbon ion implanted silicon rubber, C-SR)表面细菌黏附最少[(0.98±0.35)×105CFU],C-SR组细菌黏附明显少于SR组(P<0.05),HA/SR组细菌黏附较SR组有所减少,但是差异无统计学意义(P>0.05);材料的表面亲/疏水性与细菌黏附呈相似趋势;而表面粗糙度的变化与细菌黏附趋势不一致。      结论      硅橡胶表面的亲/疏水性可能是影响细菌黏附的主要因素。


Objective      To investigate the relationship of the surface properties of silicone rubber with bacterial adhesion in order to provide theoretical basis to prevent infection of bio-implants.       Methods      Bacterial culture and colony formation counting were used to analyze the bacterial adhesion on the surface of ordinary silicon rubber (SR), carbon ion implanted silicon rubber (C-SR), and hydroxyapatite coating silicone rubber (HA/SR). Scanning electron microscopy (SEM) was used to observe the morphology of the substrate surface. The molecular structures of the surface were analyzed by X-ray photoelectron spectroscopy (XPS), X-ray diffraction spectroscopy (XRD) and Fourier transform infrared spectrometry (FTIR). Meanwhile, the hydrophilic/hydrophobic properties of substrate surface were detected by water contact angle test.       Results       The number of bacteria adhered to the surface was largest in the SR[(2.11±0.12)×105CFU], followed by HA/SR[(1.88±0.88)×105CFU], and then C-SR[(0.98±0.35)×105CFU]. Significant difference was seen in the bacterial count between C-SR and SR (P<0.05), but not between HA/SR and SR (P>0.05). Similar trend was also in the hydrophilic/hydrophobic properties, but not in the surface roughness.       Conclusion       Hydrophilic/hydrophobic properties may play an important role for bacterial adhesion on the biomaterial surface.


[1]Subbiahdoss G, Aleyt T, Kuijer R, et al. Influence of prophylactic antibiotics on tissue integration versus bacterial colonization on poly(methyl methacrylate)[J]. Int J Artif Organs, 2012, 35(10):  840-846.
[2]Ludecke C, Jandt K D, Siegismund D, et al. Reproducible biofilm cultivation of chemostat-grown Escherichia coli and investigation of bacterial adhesion on biomaterials using a non-constant-depth film fermenter[J]. PLoS One, 2014, 9(1):  e84837.
[3]Sanders D L, Kingsnorth A N, Lambie J, et al. An experimental study exploring the relationship between the size of bacterial inoculum and bacterial adherence to prosthetic mesh[J]. Surg Endosc, 2013, 27(3):  978-985.
[4]Xu L C, Siedlecki C A. Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation[J]. Acta Biomater, 2012, 8(1):  72-81.
[5]Levon J, Myllymaa K, Kouri V P, et al. Patterned macroarray plates in comparison of bacterial adhesion inhibition of tantalum, titanium, and chromium compared with diamond-like carbon[J]. J Biomed Mater Res A, 2010, 92(4):  1606-1613.
[6]Rochford E T, Poulsson A H, Salavarrieta-Varela J, et al. Bacterial adhesion to orthopaedic implant materials and a novel oxygen plasma modified PEEK surface[J]. Colloids Surf B Biointerfaces, 2014, 113:  213-222.
[7]Wang S L, Shi X H, Yang Z, et al. Osteopontin (OPN) is an important protein to mediate improvements in the biocompatibility of C ion-implanted silicone rubber[J]. PLoS One, 2014, 9(6):  e98320.
[8]Shi X H, Wang S L, Zhang Y M, et al. Hydroxyapatite-coated sillicone rubber enhanced cell adhesion and it maybe through the interaction of EF1β and γ-actin[J]. PLoS One, 2014, 9(11):  e111503.
[9]Siegismund D, Schroeter A, Ludecke C, et al. Discrimination between random and non-random processes in early bacterial colonization on biomaterial surfaces:  application of point pattern analysis[J]. Biofouling, 2014, 30(9):  1023-1033.
[10]Kodjikian L, Roques C, Pellon G, et al. Bacterial adhesion to intraocular lenses and endophthalmitis prevention:  review of the literature[J]. J Fr Ophtalmol, 2006, 29(1):  74-81.
[11]Ji Y W, Cho Y J, Lee C H, et al. Comparison of surface roughness and bacterial adhesion between cosmetic contact lenses and conventional contact lenses[J]. Eye Contact Lens, 2015, 41(1): 25-33.
[12]Truong V K, Lapovok R, Estrin Y S, et al. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium[J]. Biomaterials, 2010, 31(13): 3674-3683.
[13]Parreira P, Magalhaes A, Goncalves I C, et al. Effect of surface chemistry on bacterial adhesion, viability, and morphology[J]. J Biomed Mater Res A, 2011, 99(3): 344-353.
[14]Tegoulia V A, Cooper S L. Staphylococcusaureus adhesion to self-assembled monolayers:  effect of surface chemistry and fibrinogen presence[J]. Colloids Surf B Biointerfaces, 2002, 24(3/4):  217-228.
[15]Shi L, Ardehali R, Caldwell K D, et al. Mucin coating on polymeric material surfaces to suppress bacterial adhesion[J]. Colloids Surf B Biointerfaces, 2000, 17(4): 229-239.
[16]Vadillo-Rodríguez V, Pacha-Olivenza M A, Gonzalez-Martin M L, et al. Adsorption behavior of human plasma fibronectin on hydrophobic and hydrophilic Ti6Al4V substrata and its influence on bacterial adhesion and detachment[J]. J Biomed Mater Res A, 2013, 101(5): 1397-1404.


[2]毛青.科学认识H7N9, 有效防控人感染禽流感病毒[J].第三军医大学学报,2013,35(08):693.
 Mao Qing.Scientific understanding of avian influenza A H7N9 virus to effectively prevent and control of its infection[J].J Third Mil Med Univ,2013,35(19 ):693.
 Peng Gang,Shu Maoqin,Song Zhiyuan,et al.Pacemaker bag erosion in 12 patients: a clinical analysis[J].J Third Mil Med Univ,2011,33(19 ):1758.

更新日期/Last Update: 2015-09-28