[1]吴苏南,许杨,陈石磊,等.单宁酸对电离辐射所致巨核细胞损伤的保护作用[J].第三军医大学学报,2015,37(07):638-642.
 Wu Sunan,Xu Yang,Chen Shilei,et al.Tannic acid protects megakaryocytes against ionizing radiation via its anti-oxidative activity[J].J Third Mil Med Univ,2015,37(07):638-642.
点击复制

单宁酸对电离辐射所致巨核细胞损伤的保护作用(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
37卷
期数:
2015年第07期
页码:
638-642
栏目:
论著
出版日期:
2015-04-15

文章信息/Info

Title:
Tannic acid protects megakaryocytes against ionizing radiation via its anti-oxidative activity
作者:
吴苏南许杨陈石磊申明强陈芳陈默张舟王崧粟永萍程天民王军平
第三军医大学军事预防医学院全军复合伤研究所,创伤、烧伤与复合伤国家重点实验室,重庆市纳米医药工程技术研究中心
Author(s):
Wu Sunan Xu Yang Chen Shilei Shen Mingqiang Chen Fang Chen Mo Zhang Zhou Wang Song Su Yongping Cheng Tianmin Wang Junping

State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Military Preventive Medicine, Third Military medical University, Chongqing, 400038, China

关键词:
单宁酸巨核细胞血小板辐射损伤
Keywords:
tannic acid megakaryocyte platelet radiation injury
分类号:
R331.14; R339.57; R914.4
文献标志码:
A
摘要:

目的      研究单宁酸(tannic acid,TA)对电离辐射所致巨核细胞损伤的保护作用,并探讨其作用机制。      方法      体外培养巨核细胞株M07e,经0、0.5、1、2.5、5、10 μg/mL单宁酸预处理后给予10 Gy 60Co γ射线照射,继续培养不同时间,采用MTT法、荧光酶标仪检测法和流式细胞术检测技术分别检测细胞存活率、活性氧(ROS)水平、线粒体膜电位(mitochondrial membrane potential,MMP)和凋亡率变化。给予BALB/c小鼠5 Gy60Co γ射线全身一次性照射,复制急性放射损伤实验动物模型,设置生理盐水对照组和TA灌胃预处理组,通过尾静脉外周血常规检测和骨髓病理切片观察,分析血小板水平和骨髓巨核细胞数目变化情况。      结果      TA能够剂量依赖性地提高受照巨核细胞的存活率;与单纯辐照组相比,TA预处理可以显著降低细胞内总ROS水平(P<0.01)、提高细胞线粒体膜电位(P<0.05)和降低细胞凋亡率(P<0.05)。动物实验结果显示,TA预处理能够显著抑制辐射损伤引起的骨髓巨核细胞数量减少,照后第7、12、15、19天时TA处理组血小板水平显著高于对照组(P<0.05,P<0.01)。      结论      TA对电离辐射所致巨核细胞损伤具有显著保护作用,其作用机制可能与其突出的抗氧化应激活性有关。

Abstract:

Objective       To determine the protective effect of tannic acid (TA) on megakaryocytes against ionizing radiation and investigate its underlying mechanism.       Methods       Human megakaryoblast M07e cells were pretreated with TA at concentrations of 0, 0.5, 1, 2.5, 5 and 10 μg/mL before receiving 10 Gy γ-ray irradiation. The cell viability, levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and apoptotic rate of the cells were detected after irradiation. Subsequently, BALB/c mice with or without TA treatment were irradiated with 60Co γ at a dose of 5 Gy, and the blood platelet count and number of megakaryocytes in bone marrow were determined at appointed time points.       Results       TA dose-dependently improved the survival rate of M07e cells after irradiation. Compared with control group, TA significantly reduced the intracellular ROS levels (P<0.05), improved MMP (P<0.05) and decreased the apoptotic rate (P<0.05) in M07e cells after irradiation. In vivo, TA pretreatment resulted in a significant increase in the number of megakaryocytes in bone marrow in BALB/c mice after irradiation. Meanwhile, the blood platelet counts in TA treated mice were much higher than those in the control group, especially at days 7, 12, 15, and 19 after irradiation (P<0.05, P<0.01).       Conclusion       TA has a protective effect on megakaryocytes against ionizing irradiation, possibly via its inhibition on radiation-induced oxidative stress.

参考文献/References:

[1]Kris-Etherton P M, Hecker K D, Bonanome A, et al. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer[J]. Am J Med, 2002, 113(Suppl 9B): 71S-88S.
[2]Lorrain B, Ky I, Pechamat L, et al. Evolution of analysis of polyhenols from grapes, wines, and extracts[J]. Molecules, 2013, 18(1): 1076-1100.
[3]Kim M H, Ha S Y, Oh M H, et al. Anti-oxidative and anti-proliferative activity on human prostate cancer cells lines of the phenolic compounds from Corylopsis coreana Uyeki[J]. Molecules, 2013, 18(5): 4876-4886.
[4]Larrosa M, Garcia-Conesa M T, Espin J C, et al. Ellagitannins, ellagic acid and vascular health[J]. Mol Aspects Med, 2010, 31(6): 513-539.
[5]陈石磊, 陈芳, 许杨, 等.重组胰岛素样生长因子-I促进辐射损伤小鼠血小板水平的恢复[J]. 第三军医大学学报, 2011, 33(22): 2340-2344.
[6]Chen S C, Chung K T. Mutagenicity and antimutagenicity studies of tannic acid and its related compounds[J]. Food Chem Toxicol, 2000, 38(1): 1-5.
[7]秦绪军, 海春旭, 何伟, 等. 单宁对小鼠辐射损伤保护作用的研究[J]. 营养学报, 2004, 26(5): 344-347.
[8]Deutsch V R, Tomer A. Megakaryocyte development and platelet production[J]. Br J Haematol, 2006, 134(5): 453-466.
[9]Waselenko J K, MacVittie T J, Blakely W F, et al. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group[J]. Ann Intern Med, 2004, 140(12): 1037-1051.
[10]Shinohara A, Imai Y, Nakagawa M, et al. Intracellular reactive oxygen species mark and influence the megakaryocyte-erythrocyte progenitor fate of common myeloid progenitors[J]. Stem Cells, 2014, 32(2): 548-557.
[11]Dernbach E, Urbich C, Brandes R P, et al. Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress[J]. Blood, 2004, 104(12): 3591-3597.
[12]王川.葡萄籽单宁的抗氧化性研究[J].食品科技, 2009, 34(2): 184-187.
[13]Leikert J F, Rathel T R, Wohlfart P, et al. Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells[J]. Circulation, 2002, 106(13): 1614-1617.
[14]Jia H, Liu J W, Ufur H, et al. The antihypertensive effect of ethyl acetate extract from red raspberry fruit in hypertensive rats[J]. Pharmacogn Mag, 2011, 7(25): 19-24.
[15]Skulachev V P. A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects[J]. Biochemistry (Mosc), 2007, 72(12): 1385-1396.
[16]Ma W, Yuan L, Yu H, et al. Mitochondrial dysfunction and oxidative damage in the brain of diet-induced obese rats but not in diet-resistant rats[J]. Life Sci, 2014, 110(2): 53-60.
[17]Tsutsui H, Kinugawa S, Matsushima S. Mitochondrial oxidative stress and dysfunction in myocardial remodelling[J]. Cardiovasc Res, 2009, 81(3): 449-456.
[18]Yan C, Huang D, Zhang Y. The involvement of ROS overproduction and mitochondrial dysfunction in PBDE-47-induced apoptosis on Jurkat cells[J]. Exp Toxicol Pathol, 2011, 63(5): 413-417.

相似文献/References:

[1]韩京,冉新泽,粟永萍,等.辐射损伤对巨核细胞造血调控因子IL-6和TNF-α的影响[J].第三军医大学学报,2005,27(18):1817.
[2]张舟,陈芳,曾东风,等.TMP线性二联体多肽的筛选及其对辐射损伤小鼠血小板减少症的救治作用[J].第三军医大学学报,2013,35(19):2005.
 Zhang Zhou,Chen Fang,Zeng Dongfeng,et al.Screening for dimmer of thrombopoietin mimetic peptide with potent thrombo-cytopoietic effect and its effect on radiation-induced thrombocytopenia in mice[J].J Third Mil Med Univ,2013,35(07):2005.
[3]董岸莺,艾国平,粟永萍,等.烧伤后骨髓巨核细胞被噬现象机制的初步探讨[J].第三军医大学学报,2006,28(20):2017.
[4]武大林,汪坤镕.缺铁性贫血巨核细胞改变及其意义探讨[J].第三军医大学学报,1991,13(02):0.[doi:10.16016/j.1000-5404.1991.02.042 ]
[5]郑怀恩,程天民.犬烧冲复合伤时血小板的变化[J].第三军医大学学报,1990,12(03):0.[doi:10.16016/j.1000-5404.1990.03.013 ]
 Zheng Huaien and Cheng Tianmin..[J].J Third Mil Med Univ,1990,12(07):0.[doi:10.16016/j.1000-5404.1990.03.013 ]
[6]王庆余,汪坤镕,张新华,等.原发性血小板减少性紫癜伴发甲状腺机能亢进症1例报告[J].第三军医大学学报,1989,11(06):0.[doi:10.16016/j.1000-5404.1989.06.033 ]
[7]汪坤镕.急性骨髓纤维化最终结果[J].第三军医大学学报,1988,10(01):0.[doi:10.16016/j.1000-5404.1988.01.018 ]
[8]曾祥义,张书模.白血病并发阴茎异常勃起一例报告[J].第三军医大学学报,1988,10(06):0.[doi:10.16016/j.1000-5404.1988.06.031 ]

更新日期/Last Update: 2015-04-03