[1]LIMMATHUROTSAKUL D, GOLDING N, DANCE D A B, et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis[J]. Nat Microbiol, 2016, 1(1): 1-13. DOI: 10.1038/nmicrobiol.2015.8.
[2]WIERSINGA W J, VIRK H S, TORRES A G, et al. Limmathurotsakul D: Melioidosis[J]. Nat Rev Dis Primers, 2018, 4: 17107. DOI:10.1038/nrdp.2017.107.
[3]PEACOCK SJ. Melioidosis[J]. Curr Opin Infect Dis, 2006, 19(5): 421-428.DOI: 10.1097/01.qco.0000244046.31135.b3.
[4]SCHMIDT I H E, GILDHORN C, BNING M A L, et al. Burkholderia pseudomallei modulates host iron homeostasis to facilitate iron availability and intracellular survival[J]. PLoS Negl Trop Dis 2018, 12(1): e0006096. DOI: 10.1371/journal.pntd.0006096.
[5]RUSTAD T R, HARRELL M I, LIAO R, et al. The enduring hypoxic response of Mycobacterium tuberculosis[J]. PLoS ONE 2008, 3(1): e1502. DOI: 10.1371/journal.pone.0001502.
[6]ALLWOOD E M, DEVENISH R J, PRESCOTT M, et al. Strategies for intracellular survival of Burkholderia pseudomallei[J]. Front Microbiol, 2011, 2: 170.
[7]VANDER BROEK C W, STEVENS J M.TYPE Ⅲ secretion in the melioidosis pathogen Burkholderia pseudomallei[J]. Front Cell Infect Microbiol, 2017, 7: 255. DOI:10.3389/fcimb.2017.00255.
[8]MUANGSOMBUT V, SUPARAK S, PUMIRAT P, et al.Inactivation of Burkholderia pseudomallei bsaQ results in decreased invasion efficiency and delayed escape of bacteria from endocytic vesicles[J]. Arch Microbiol 2008, 190(6): 623-631. DOI:10.1007/s00203-008-0413-3.
[9]BURTNICK M N, BRETT P J, NAIR V, et al. Burkholderia pseudomallei type Ⅲ secretion system mutants exhibit delayed vacuolar escape phenotypes in RAW 264.7 murine macrophages[J]. Infect Immun 2008, 76(7): 2991-3000. DOI:10.1128/IAI.00263-08.
[10]PILATZ S, BREITBACH K, HEIN N, et al. Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence[J]. Infect Immun, 2006, 74(6): 3576-3586. DOI: 10.1128/iai.01262-05.
[11]KANG W T, VELLASAMY K M, CHUA E G, et al. Functional characterizations of effector protein BipC, a type Ⅲ secretion system protein, in Burkholderia pseudomallei pathogenesis[J]. J Infect Dis, 2015, 211(5): 827-834. DOI:10.1093/infdis/jiu492.
[12]SRINON V, MUANGMAN S, IMYAEM N, et al. Comparative assessment of the intracellular survival of the Burkholderia pseudomallei bopC mutant[J]. J Microbiol, 2013, 51(4): 522-526. DOI: 10.1007/s12275-013-2557-3.
[13]AUNKHAM A, SCHULTE A, WINTERHALTER M, et al.Porin involvement in cephalosporin and carbapenem resistance of Burkholderia pseudomallei[J]. PLoS ONE, 2014, 9(5): e95918. DOI:10.1371/journal.pone.0095918.
[14]RHOLL DA, PAPP-WALLACE KM, TOMARAS AP, et al. Molecular investigations of PenA-mediated beta-lactam resistance in Burkholderia pseudomallei[J]. Front Microbiol, 2011, 2: 139. DOI:10.3389/fmicb.2011.00139.
[15]PODNECKY N L, WUTHIEKANUN V, PEACOCK S J, et al. The BpeEF-OprC efflux pump is responsible for widespread trimethoprim resistance in clinical and environmental Burkholderia pseudomallei isolates[J]. Antimicrob Agents Chemother, 2013, 57(9): 4381-4386. DOI: 10.1128/aac.00660-13.
[16]CHANTRATITA N, RHOLL DA, SIM B, et al. Anti-microbial resistance to ceftazidime involving loss of penicillin-binding protein 3 in Burkholderia pseudomallei[J]. Proc Natl Acad Sci USA, 2011, 108(41): 17165-17170. DOI:10.2307/41321850.
[17]HAMAD MA, AUSTIN CR, STEWART AL, et al. Adaptation and antibiotic tolerance of anaerobic Burkholderia pseudomallei[J]. Antimicrob Agents Chemother, 2011, 55(7): 3313-3323. DOI:10.1128/AAC.00953-10.