WANG Junping,CHEN Naicheng.Single cell sequencing in the study of hematopoietic system: application and perspects[J].J Third Mil Med Univ,2021,43(17):1603-1610.

单细胞测序在造血系统研究中的应用与展望(/HTML )




Single cell sequencing in the study of hematopoietic system: application and perspects
WANG Junping CHEN Naicheng

NaichengState Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Faculty of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China

R322.2; R394.2

目的单细胞测序(single cell sequencing,SCS)是一项在细胞个体层面进行精准化分析的技术。它提供了全新的角度去识别单个细胞的种类、功能、状态,以及与其他细胞的相互关联,极大深化了人们对细胞异质性、基因与分子功能多样性等方面的理解。随着各个技术环节的不断优化,SCS技术已广泛应用于多个研究领域,其中造血系统研究便是该技术运用的范例。SCS不仅在基础研究中,协助完成了生理和病理生理条件下的相关造血细胞图谱的构建,探索了血细胞发育分化的可能路径,而且在临床诊治过程中,有效推动疾病发生、进展和转归等机制的破解,促进个体疗效差异显著、易于复发等现象的潜在因素的挖掘。现就SCS的技术概况、发展趋势及其在造血系统的应用进行评述,以期为后续SCS技术的积极与合理应用提供参考。


Single cell sequencing (SCS) is a technique for precise analysis of cells at an individual level, which provides a new perspective on the identification of individual cell types, functions,states and interactions with other cells, and greatly deepens the understanding of cellular heterogeneity and genetic and molecular functional diversity. With the continuous optimization of various technical aspects, SCS technology has been widely used in many research areas, and the study of the hematopoietic system is an example of its application. SCS has not only assisted in the construction of relevant hematopoietic cell profiles under physiological and pathophysiological conditions in basic research, but also explored possible pathways of hematopoietic cell development and differentiation in clinical practice. Moreover, in the process of clinical diagnosis and treatment, it can effectively promote the deciphering of mechanisms of disease occurrence, progression and prognosis, and facilitate the exploration of potential factors of phenomena such as significant differences in individual outcomes and ease of relapse. Therefore, this paper reviews the technical overview and development trend of SCS and its application in the hematopoietic system, with a view to providing references for subsequent positive and reasonable application of SCS.


[1]HAN X, ZHOU Z, FEI L, et al. Construction of a human cell landscape at single-cell level[J]. Nature, 2020, 581(7808): 303-309. DOI:10.1038/s41586- 020-2157-4. 
[2]MORITA Y, EMA H, NAKAUCHI H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment[J]. J Exp Med, 2010, 207(6): 1173-1182. DOI:10.1084/jem.20091318. 
[3]KOKKALIARIS K D. Dissecting the spatial bone marrow microenvironment of hematopoietic stem cells[J]. Curr Opin Oncol, 2020, 32(2): 154-161. DOI:10.1097/CCO.0000000000000605.
[4]PENNISI E. Single-cell sequencing tackles basic and biomedical questions[J]. Science, 2012, 336(6084): 976-977. DOI:10.1126/science.336.6084.976. 
[5]DE SOUZA N. Single-cell genetics[J]. Nat Methods, 2013, 10(9): 820. DOI:10.1038/nmeth.2626. 
[6]CHI K R. Singled out for sequencing[J]. Nat Methods, 2014, 11(1): 13-17. DOI:10.1038/nmeth.2768. 
[7]WATCHAM S, KUCINSKI I, GOTTGENS B. New insights into hematopoietic differentiation landscapes from single-cell RNA sequencing[J]. Blood, 2019, 133(13): 1415-1426. DOI:10.1182/blood-2018- 08-835355. 
[8]DEMAREE B, DELLEY C L, VASUDEVAN H N, et al. Joint profiling of DNA and proteins in single cells to dissect genotype-phenotype associations in leukemia[J]. Nat Commun, 2021, 12(1): 1583. DOI:10.1038/s41467-021-21810-3. 
[9]ZHANG Y J, WANG D, PENG M, et al.Single-cell RNA sequencing in cancer research[J].J Exp Clin Cancer Res,2021,40(1):81.DOI: 10.1186/s13046-021- 01874-1.
[10]RINKE C, LEE J, NATH N, et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics[J]. Nat Protoc, 2014, 9(5): 1038-1048. DOI:10.1038/nprot.2014.067. 
[11]ELLIS P, MOORE L, SANDERS M A, et al. Reliable detection of somatic mutations in solid tissues by laser-capture microdissection and low-input DNA sequencing[J]. Nat Protoc, 2021, 16(2): 841-871. DOI:10.1038/s41596-020-00437-6. 
[12]BOUNAB Y, EYER K, DIXNEUF S, et al. Dynamic single-cell phenotyping of immune cells using the microfluidic platform DropMap[J]. Nat Protoc, 2020, 15(9): 2920-2955. DOI:10.1038/s41596-020-0354-0. 
[13]KISS C, KOST-ALIMOVA M, KLEIN G, et al. Optimisation of the degenerate oligonucleotide primed PCR (DOP-PCR) for capillary thermocycler[J]. Biomol Eng, 2002, 19(1): 31-34. DOI:10.1016/S1389-0344(02)00008-4. 
[14]SPITS C, LE CAIGNEC C, DE RYCKE M, et al. Whole-genome multiple displacement amplification from single cells[J]. Nat Protoc, 2006, 1(4): 1965-1970. DOI:10.1038/nprot.2006.326. 
[15]ZONG C, LU S, CHAPMAN A R, et al. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell[J]. Science, 2012, 338(6114): 1622-1626. DOI:10.1126/science.1229164. 
[16]TANG F, BARBACIORU C, WANG Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5): 377-382. DOI:10.1038/nmeth.1315. 
[17]RAMANI V, DENG X, QIU R, et al. Massively multiplex single-cell Hi-C[J]. Nat Methods, 2017, 14(3): 263-266. DOI:10.1038/nmeth.4155. 
[18]GUO H, ZHU P, WU X, et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing[J]. Genome Res, 2013, 23(12): 2126-2135. DOI:10.1101/gr.161679.113. 
[19]RANZONI A M, TANGHERLONI A, BEREST I, et al. Integrative single-cell RNA-seq and ATAC-seq analysis of human developmental hematopoiesis[J]. Cell Stem Cell, 2021, 28(3): 472-487.e7. DOI:10.1016/j.stem.2020.11.015. 
[20]GRANJA J M, KLEMM S, MCGINNIS L M, et al. Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia[J]. Nat Biotechnol, 2019, 37(12): 1458-1465. DOI:10.1038/s41587-019-0332-7. 
[21]EAVES C J. Hematopoietic stem cells: concepts, definitions, and the new reality[J]. Blood, 2015, 125(17): 2605-2613. DOI:10.1182/blood-2014- 12-570200. 
[22]RODRIGUEZ-FRATICELLI A E, WOLOCK S L, WEINREB C S, et al. Clonal analysis of lineage fate in native haematopoiesis[J]. Nature, 2018, 553(7687): 212-216. DOI:10.1038/nature25168. 
[23]DONG F, HAO S, ZHANG S, et al. Differentiation of transplanted haematopoietic stem cells tracked by single-cell transcriptomic analysis[J]. Nat Cell Biol, 2020, 22(6): 630-639. DOI:10.1038/s41556-020- 0512-1. 
[24]XIE X W, LIU M Y, ZHANG Y W, et al. Single-cell transcriptomic landscape of human blood cells[J]. Natl Sci Rev, 2021, 8(3): nwaa180. DOI:10.1093/nsr/nwaa180. 
[25]BOWLING S, SRITHARAN D, OSORIO F G, et al. An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells[J]. Cell, 2020, 181(6): 1410-1422.e27. DOI:10.1016/j.cell.2020. 04.048. 
[26]HAAS S, TRUMPP A, MILSOM M D. Causes and consequences of hematopoietic stem cell heterogeneity[J]. Cell Stem Cell, 2018, 22(5): 627-638. DOI:10.1016/j.stem.2018.04.003. 
[27]STABER P B, ZHANG P, YE M, et al. Sustained PU.1 levels balance cell-cycle regulators to prevent exhaustion of adult hematopoietic stem cells[J]. Mol Cell, 2013, 49(5): 934-946. DOI:10.1016/j.molcel. 2013.01.007. 
[28]JUN T K, MORIGUCHI T, SUZUKI M, et al. The Gata1 5’ region harbors distinct Cis-regulatory modules that direct gene activation in erythroid cells and gene inactivation in HSCs[J]. Blood, 2013, 122(20): 3450-3460. DOI:10.1182/blood-2013-01- 476911. 
[29]TRAPNELL C, CACCHIARELLI D, GRIMSBY J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[J]. Nat Biotechnol, 2014, 32(4): 381-386. DOI:10.1038/nbt.2859. 
[30]LIU Z, GU Y, CHAKAROV S, et al. Fate mapping via Ms4a3-expression history traces monocyte-derived cells[J]. Cell, 2019, 178(6): 1509-1525.e19. DOI:10.1016/j.cell.2019.08.009. 
[31]BRAND M, MORRISSEY E. Single-cell fate decisions of bipotential hematopoietic progenitors[J]. Curr Opin Hematol, 2020, 27(4): 232-240. DOI:10.1097/MOH.0000000000000592. 
[32]VELTEN L, HAAS S F, RAFFEL S, et al. Human haematopoietic stem cell lineage commitment is a continuous process[J]. Nat Cell Biol, 2017, 19(4): 271-281. DOI:10.1038/ncb3493. 
[33]OLSSON A,VENKATASUBRAMANIAN M,CHAUDHRI V K, et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice[J]. Nature, 2016, 537(7622): 698-702. DOI:10.1038/nature19348. 
[34]VELTEN L, STORY B A, HERNNDEZ-MALMIERCA P, et al. Identification of leukemic and pre-leukemic stem cells by clonal tracking from single-cell transcriptomics[J]. Nat Commun, 2021, 12(1): 1366. DOI:10.1038/s41467- 021-21650-1. 
[35]QIN P, PANG Y, HOU W, et al. Integrated decoding hematopoiesis and leukemogenesis using single-cell sequencing and its medical implication[J]. Cell Discov, 2021, 7(1): 2. DOI:10.1038/s41421-020- 00223-4. 
[36]ZHU C Y, LIAN Y, WANG C C, et al. Single-cell transcriptomics dissects hematopoietic cell destruction and T cell engagement in aplastic Anemia[J]. Blood, 2021, 138(1): 23-33. DOI:10.1182/blood. 2020008966. 
[37]LUNDGREN S, KERNEN M A I, KANKAINEN M, et al. Somatic mutations in lymphocytes in patients with immune-mediated aplastic anemia[J]. Leukemia, 2021, 35(5): 1365-1379. DOI:10.1038/ s41375-021-01231-3. 
[38]UY G L, DUNCAVAGE E J, CHANG G S, et al. Dynamic changes in the clonal structure of MDS and AML in response to epigenetic therapy[J]. Leukemia, 2017, 31(4): 872-881. DOI:10.1038/leu.2016.282. 
[39]CHEN J, KAO Y R, SUN D, et al. Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level[J]. Nat Med, 2019, 25(1): 103-110. DOI:10.1038/s41591-018-0267-4. 
[40]DAVER N, WEI A H, POLLYEA D A, et al. New directions for emerging therapies in acute myeloid leukemia: the next chapter[J]. Blood Cancer J, 2020, 10(10): 107. DOI:10.1038/s41408-020-00376-1. 
[41]GEBRU M T, WANG H G. Therapeutic targeting of FLT3 and associated drug resistance in acute myeloid leukemia[J]. J Hematol Oncol, 2020, 13(1): 155. DOI:10.1186/s13045-020-00992-1. 
[42]CHARAF L, MAHON F X, LAMRISSI-GARCIA I, et al. Effect of tyrosine kinase inhibitors on stemness in normal and chronic myeloid leukemia cells[J]. Leukemia, 2017, 31(1): 65-74. DOI:10.1038/leu. 2016.154. 
[43]WARFVINGE R, GEIRONSON L, SOMMARIN M N E, et al. Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML[J]. Blood, 2017, 129(17): 2384-2394. DOI:10.1182/blood-2016-07-728873. 
[44]GUGLIELMELLI P, PACILLI A, ROTUNNO G, et al. Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis[J]. Blood, 2017, 129(24): 3227-3236. DOI:10.1182/blood-2017-01-761999. 
[45]HASHIMSHONY T, SENDEROVICH N, AVITAL G, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biol, 2016, 17: 77. DOI:10.1186/s13059-016-0938-8. 
[46]SAUNDERS A, MACOSKO E Z, WYSOKER A, et al. Molecular diversity and specializations among the cells of the adult mouse brain[J]. Cell, 2018, 174(4): 1015-1030.e16. DOI:10.1016/j.cell.2018.07. 028. 
[47]DEY S S, KESTER L, SPANJAARD B, et al. Integrated genome and transcriptome sequencing of the same cell[J]. Nat Biotechnol, 2015, 33(3): 285-289. DOI:10.1038/nbt.3129. 
[48]ANGERMUELLER C, CLARK S J, LEE H J, et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity[J]. Nat Methods, 2016, 13(3): 229-232. DOI:10.1038/nmeth.3728. 
[49]MANIATIS S, IJ T, VICKOVIC S, et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis[J]. Science, 2019, 364(6435): 89-93. DOI:10.1126/science.aav9776. 
[50]ZHANG P, YANG M, ZHANG Y, et al. Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer[J]. Cell Rep, 2019, 27(6): 1934-1947.e5. DOI:10.1016/j.celrep.2019.04.052. 
[51]ZHOU J, XU J, ZHANG L, et al. Combined single-cell profiling of lncRNAs and functional screening reveals that H19 is pivotal for embryonic hematopoietic stem cell development[J]. Cell Stem Cell, 2019, 24(2): 285-298.e5. DOI:10.1016/j.stem. 2018.11.023. 
[52]DAI Y J, WANG Y Y, HUANG J Y, et al. Conditional knockin of Dnmt3a R878H initiates acute myeloid leukemia with mTOR pathway involvement[J]. Proc Natl Acad Sci USA, 2017, 114(20): 5237-5242. DOI:10.1073/pnas.1703476114.



更新日期/Last Update: 2021-09-03