[1]唐堂,唐朋,谭信韬,等.46例前列腺癌患者的组织DNA及血液ctDNA测序分析[J].第三军医大学学报,2021,43(17):1658-1666.
 TANG Tang,TANG Peng,TAN Xintao,et al.Sequencing analysis on tissue DNA and blood ctDNA from 46 patients with prostate cancer[J].J Third Mil Med Univ,2021,43(17):1658-1666.
点击复制

46例前列腺癌患者的组织DNA及血液ctDNA测序分析(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
43卷
期数:
2021年第17期
页码:
1658-1666
栏目:
基础医学
出版日期:
2021-09-15

文章信息/Info

Title:
Sequencing analysis on tissue DNA and blood ctDNA from 46 patients with prostate cancer
作者:
唐堂唐朋谭信韬冉强彭松刘秋礼徐静江军
陆军军医大学(第三军医大学)大坪医院泌尿外科
Author(s):
TANG Tang TANG Peng TAN Xintao RAN Qiang PENG Song LIU Qiuli XU Jing JIANG Jun
Department of Urology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
 
关键词:
前列腺癌二代测序全外显子测序基因突变同源重组基因
Keywords:
prostate cancer second generation sequencing whole exon sequencing gene mutations homologous recombinant genes
分类号:
R394.3; R730.43; R737.25
文献标志码:
A
摘要:

目的探讨前列腺癌患者组织DNA与血液ctDNA检出的突变情况,分析基因突变与临床特点和治疗的相关性。方法采用探针杂交捕获和Illumina高通量测序为基础的靶向二代测序技术检测本院泌尿外科46例病理诊断明确的前列腺癌患者的前列腺组织标本(n=31)以及外周血液标本(n=32)循环肿瘤细胞DNA(circulating tumor DNA,ctDNA)的突变情况,检测范围包括1 021个基因的全外显子区域及部分内含子区域中的4种突变类型(点突变、小片段的插入缺失、拷贝数变异和目前已知的融合基因)。结果在31例患者的前列腺组织标本中最常被检出的突变基因为TP53(29%,9/31),其次为CDK12(22.6%,7/31)、FOXA1(22.6%,7/31)与JAK1(16.1%,5/31)。在32例外周血ctDNA标本中检测出的常见突变基因为AR(34.3%,11/32)、APC(25%,8/32)、CDK12(18.8%,6/32)、DNMT3a(18.8%,6/32)与TP53(18.8%,6/32)。TMPRSS2-ERG融合基因在所有检测患者中检出率为13%(6/46)。其中1例患者同时存在TMPRSS2-ERG、VEGFA-TMPRSS2及ERG-VEGFA融合突变。46例患者中同源重组相关基因的体细胞突变检出率为21.7%,携带有胚系同源重组基因突变患者占8.7%。且携带(无论胚系或体细胞)同源重组基因突变患者的发病年龄更低、Gleason评分更高、转移灶数量更多,特别是携带胚系突变的患者更显著。结论血液ctDNA和传统的组织DNA样本均可检出基因突变;血液ctDNA检测可动态监控前列腺癌基因频谱在治疗过程中的变化,有助于及时调整治疗方案。

Abstract:

ObjectiveTo investigate the mutations in the tissue DNA and plasma circulating tumor DNA (ctDNA) from patients with prostate cancer, and analyze their association with clinical characteristics and treatment. MethodsBased on probe hybridization capture and Illumina high-throughput sequencing, a targeted second-generation sequencing was used to analyze the mutations in 31 tumor tissues and 32 peripheral blood specimens from 46 patients with pathologically diagnosed prostate cancer. The tumor tissues and peripheral blood specimens were sequenced in the whole exons area and part of the introns area of 1 021 genes for 4 types of mutations (point mutation, loss/insert of small fragments, copy number variation and currently known fusion genes). ResultsThe most frequently mutated gene was TP53 (29.0%, 9/31), followed by CDK12 (22.6%, 7/31), FOXA1 (22.6%, 7/31) and JAK1 (16.1%, 5/31) in 31 tissue samples. The most common mutant genes in the 32 blood samples were AR (34.3%, 11/32), APC (25.0%, 8/32), CDK12 (18.8%, 6/32), DNMT3a (18.8%, 6/32) and TP53 (18.8%, 6/32). TMPRSS2-ERG fusion gene was detected in 13.0% (6/46) of the 46 patients. One patient had TMPRSS2-ERG, VEGFA-TMPRSS2, and ERG-VEGFA fusion mutations simultaneously. The somatic mutation of homologous recombination (HR) associated genes were found in 21.7% (10/46) of all the patients, and those with germline mutations in the HR gene accounted for 8.7% (4/46) of all the patients. Moreover, the patients with HR gene mutations (either germline or somatic), especially those with germline mutations, had younger onset-age, higher Gleason score, and more metastases. ConclusionGene mutation can be detected from both blood ctDNA and traditional tissue DNA. Dynamic blood ctDNA testing can monitor the changes in gene spectrum of prostate cancer, and is helpful to adjust treatment scheme in time. 

参考文献/References:

[1]FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018[J]. Eur J Cancer, 2018, 103: 356-387. DOI:10.1016/j.ejca.2018.07.005.
[2]TEOH J Y C, HIRAI H W, HO J M W, et al. Global incidence of prostate cancer in developing and developed countries with changing age structures[J]. PLoS ONE, 2019, 14(10): e0221775. DOI:10.1371/journal.pone.0221775.
[3]PANG C, GUAN Y Y, LI H B, et al. Urologic cancer in China[J]. Jpn J Clin Oncol, 2016, 46(6): 497-501. DOI:10.1093/jjco/hyw034.
[4]STRATTON M R, CAMPBELL P J, FUTREAL P A. The cancer genome[J]. Nature, 2009, 458(7239): 719-724. DOI:10.1038/nature07943.
[5]MA X, LIU Y, LIU Y, et al. Pan-cancer genome and transcriptome analyses of 1, 699 paediatric leukaemias and solid tumours[J]. Nature, 2018, 555(7696): 371-376. DOI:10.1038/nature25795.
[6]MARSHALL C H, FU W, WANG H, et al. Prevalence of DNA repair gene mutations in localized prostate cancer according to clinical and pathologic features: association of Gleason score and tumor stage[J]. Prostate Cancer Prostatic Dis, 2019, 22(1): 59-65. DOI:10.1038/s41391-018-0086-1.
[7]LIU J N, NEAR A, CHIARAPPA J A, et al. Clinical outcomes associated with pathogenic genomic instability mutations in prostate cancer: a retrospective analysis of US pharmacy and medical claims data[J]. J Med Econ, 2019, 22(10): 1080-1087. DOI:10.1080/13696998.2019.1649267.
[8]HAMID A A, GRAY K P, SHAW G, et al. Compound genomic alterations of TP53, PTEN, and RB1 tumor suppressors in localized and metastatic prostate cancer[J]. Eur Urol, 2019, 76(1): 89-97. DOI:10.1016/j.eururo.2018.11.045.
[9]TOMLINS S A, RHODES D R, PERNER S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer[J]. Science, 2005, 310(5748): 644-648. DOI:10.1126/science.1117679.
[10]DALL’ERA M A, MCPHERSON J D, GAO A C, et al. Germline and somatic DNA repair gene alterations in prostate cancer[J]. Cancer, 2020, 126(13): 2980-2985. DOI:10.1002/cncr.32908.
[11]RANTAPERO T, WAHLFORS T, KHLER A, et al. Inherited DNA repair gene mutations in men with lethal prostate cancer[J]. Genes (Basel), 2020, 11(3): E314. DOI:10.3390/genes11030314.
[12]MARSHALL C H, ANTONARAKIS E S. Therapeutic targeting of the DNA damage response in prostate cancer[J]. Curr Opin Oncol, 2020, 32(3): 216-222. DOI:10.1097/cco.0000000000000617.
[13]CASTRO E, GOH C, OLMOS D, et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer[J]. J Clin Oncol, 2013, 31(14): 1748-1757. DOI:10.1200/JCO.2012.43.1882.
[14]RIMAR K J, TRAN P T, MATULEWICZ R S, et al. The emerging role of homologous recombination repair and PARP inhibitors in genitourinary malignancies[J]. Cancer, 2017, 123(11): 1912-1924. DOI:10.1002/cncr.30631.
[15]ZHAO E Y, SHEN Y Q, PLEASANCE E, et al. Homologous recombination deficiency and platinum-based therapy outcomes in advanced breast cancer[J]. Clin Cancer Res, 2017, 23(24): 7521-7530. DOI:10.1158/1078-0432.CCR-17-1941. 
[16]MOHLER J L, ANTONARAKIS E S, ARMSTRONG A J, et al. Prostate Cancer, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology [J]. J Natl Compr Canc Netw, 2019, 17(5): 479-505. DOI: 10.6004/jnccn.2019.0023.
[17]LORENTE D, OMLIN A, ZAFEIRIOU Z, et al. Castration-resistant prostate cancer tissue acquisition from bone metastases for molecular analyses[J]. Clin Genitourin Cancer, 2016, 14(6): 485-493. DOI:10.1016/j.clgc.2016.04.016.
[18]SAILER V, SCHIFFMAN M H, KOSSAI M, et al. Bone biopsy protocol for advanced prostate cancer in the era of precision medicine[J]. Cancer, 2018, 124(5): 1008-1015. DOI:10.1002/cncr.31173.
[19]WEI Y, WU J L, GU W J, et al. Germline DNA repair gene mutation landscape in Chinese prostate cancer patients[J]. Eur Urol, 2019, 76(3): 280-283. DOI:10.1016/j.eururo.2019.06.004.
[20]LITTON J K, RUGO H S, ETTL J, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation[J]. N Engl J Med, 2018, 379(8): 753-763. DOI:10.1056/nejmoa1802905.
[21]GOLAN T, HAMMEL P, RENI M, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer[J]. N Engl J Med, 2019, 381(4): 317-327. DOI:10.1056/NEJMoa1903387.
[22]LEDERMANN J A, DREW Y, KRISTELEIT R S. Homologous recombination deficiency and ovarian cancer[J]. Eur J Cancer, 2016, 60: 49-58. DOI:10.1016/j.ejca.2016.03.005.
[23]WONG-BROWN M W, MELDRUM C J, CARPENTER J E, et al. Prevalence of BRCA1 and BRCA2 germline mutations in patients with triple-negative breast cancer[J]. Breast Cancer Res Treat, 2015, 150(1): 71-80. DOI:10.1007/s10549-015-3293-7.
[24]ATTARD G, PARKER C, EELES R A, et al. Prostate cancer[J]. Lancet, 2016, 387(10013): 70-82. DOI:10.1016/S0140-6736(14)61947-4.
[25]CHENG H H, SOKOLOVA A O, SCHAEFFER E M, et al. Germline and somatic mutations in prostate cancer for the clinician[J]. J Natl Compr Cancer Netw, 2019, 17(5): 515-521. DOI:10.6004/jnccn.2019.7307. 
[26]CANCER GENOME ATLAS RESEARCH NETWORK. The molecular taxonomy of primary prostate cancer[J]. Cell, 2015, 163(4): 1011-1025. DOI:10.1016/j.cell.2015.10.025.
[27]ROBINSON D, VAN ALLEN E M, WU Y M, et al. Integrative clinical genomics of advanced prostate cancer[J]. Cell, 2015, 161(5): 1215-1228. DOI:10.1016/j.cell.2015.05.001.
[28]KU S Y, ROSARIO S, WANG Y Q, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance[J]. Science, 2017, 355(6320): 78-83. DOI:10.1126/science.aah4199.
[29]PRITCHARD C C, MATEO J, WALSH M F, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer[J]. N Engl J Med, 2016, 375(5): 443-453. DOI:10.1056/nejmoa1603144.
[30]WU J L, WEI Y, PAN J, et al. Prevalence of comprehensive DNA damage repair gene germline mutations in Chinese prostate cancer patients[J]. Int J Cancer, 2021, 148(3): 673-681. DOI:10.1002/ijc.33324.
[31]OH M, ALKHUSHAYM N, FALLATAH S, et al. The association of BRCA1 and BRCA2 mutations with prostate cancer risk, frequency, and mortality: a meta-analysis[J]. Prostate, 2019, 79(8): 880-895. DOI:10.1002/pros.23795.
[32]NYBERG T, FROST D, BARROWDALE D, et al. Prostate cancer risks for male BRCA1 and BRCA2 mutation carriers: a prospective cohort study[J]. Eur Urol, 2020, 77(1): 24-35. DOI:10.1016/j.eururo.2019.08.025.
[33]KOTE-JARAI Z, LEONGAMORNLERT D, SAUNDERS E, et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients[J]. Br J Cancer, 2011, 105(8): 1230-1234. DOI:10.1038/bjc.2011.383.
[34]YADAV S, HART S N, HU C L, et al. Contribution of inherited DNA-repair gene mutations to hormone-sensitive and castrate-resistant metastatic prostate cancer and implications for clinical outcome[J]. JCO Precis Oncol, 2019, 3: PO.19.00067. DOI:10.1200/PO.19.00067.
[35]CARLSON A S, ACEVEDO R I, LIM D M, et al. Impact of mutations in homologous recombination repair genes on treatment outcomes for metastatic castration resistant prostate cancer[J]. PLoS ONE, 2020, 15(9): e0239686. DOI:10.1371/journal.pone.0239686.
[36]CHENG H H, PRITCHARD C C, BOYD T, et al. Biallelic inactivation of BRCA2 in platinum-sensitive metastatic castration-resistant prostate cancer[J]. Eur Urol, 2016, 69(6): 992-995. DOI:10.1016/j.eururo.2015.11.022.
[37]TANG T, WANG L N, WANG P, et al. Case report: co-existence of BRCA2 and PALB2 germline mutations in familial prostate cancer with solitary lung metastasis[J]. Front Oncol, 2020, 10: 564694. DOI:10.3389/fonc.2020.564694.

相似文献/References:

[1]苟阳,唐永杰,杨程,等.305例髓系肿瘤的基因突变图谱比较分析[J].第三军医大学学报,2019,41(21):2069.
 GOU Yang,TANG Yongjie,YANG Cheng,et al.Landscape of genetic alterations of myeloid neoplasms in 305 Chinese cases[J].J Third Mil Med Univ,2019,41(17):2069.

更新日期/Last Update: 2021-09-03