[1]王雪,邹谋,张绍卿,等.坏死性小肠结肠炎对新生小鼠脑损伤及其程度的影响[J].第三军医大学学报,2021,43(17):1634-1641.
 ZOU Mou,ZHANG Shaoqing,LIU Lan,et al.Effects of necrotizing enterocolitis on brain injury and its severity in neonatal mice[J].J Third Mil Med Univ,2021,43(17):1634-1641.
点击复制

坏死性小肠结肠炎对新生小鼠脑损伤及其程度的影响(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
43卷
期数:
2021年第17期
页码:
1634-1641
栏目:
基础医学
出版日期:
2021-09-15

文章信息/Info

Title:
Effects of necrotizing enterocolitis on brain injury and its severity in neonatal mice
作者:
王雪邹谋张绍卿刘兰杜敏徐颖
重庆医科大学附属儿童医院麻醉科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿科学重庆市重点实验室
Author(s):
 ZOU Mou ZHANG Shaoqing LIU Lan DU Min XU Ying

Department of Anesthesiology, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Child Development and Disorders of Ministry of Education, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, 400014, China

关键词:
坏死性小肠结肠炎早产儿神经炎症脑损伤
Keywords:
necrotizing enterocolitis premature infants neuroinflammation brain injury
分类号:
R-332; R725.746.2; R749.23
文献标志码:
A
摘要:

目的探讨不同程度坏死性小肠结肠炎(necrotizing enterocolitis, NEC)对新生小鼠脑损伤的影响。方法将60只5日龄C57BL/6小鼠随机分为对照组(CON组,n=20)和坏死性小肠结肠炎组(NEC组,n=40)。CON组与母鼠同笼,母乳喂养;NEC组饲养在保育箱,采用配方奶喂养+缺氧+口服脂多糖(LPS)诱导坏死性小肠结肠炎小鼠模型,建模4 d后处死所有小鼠。建模过程中记录小鼠每日体质量并观察一般情况;HE染色观察肠道组织的病理学改变。根据回盲部肠道损伤评分将NEC组分为轻度NEC组(n=12)和重度NEC组(n=12);Nissl染色观察相应脑组织的病理学变化,并将肠道损伤程度和神经细胞的数量做相关性分析。RT-qPCR检测脑组织中炎症因子IL-1β、IL-6和TNF-α mRNA的表达水平;酶联免疫吸附法(ELISA)检测脑组织炎症因子IL-1β、IL-6和TNF-α蛋白的表达水平;免疫荧光检测活化的小胶质细胞和星形胶质细胞的数量。结果与CON组相比,NEC组小鼠活动度降低,体质量明显减轻(3.84±1.25 vs 1.76±0.26 g,P<0.05),肠道损伤严重,且在海马CA1区,轻、重度NEC组的神经细胞数量减少(125.83±6.40 vs 103.83±7.93、75.50±8.87,P<0.05),重度NEC组较轻度NEC组减少更多(P<0.05);相关性分析显示:神经细胞数量与肠道损伤的严重程度呈负相关(r=-0.943,P<0.001)。与CON组相比,NEC组脑组织炎症因子IL-1β、IL-6和TNF-ɑ的表达水平均升高(P<0.05),活化的小胶质细胞和星形胶质细胞也明显增多(P<0.05),并且重度NEC组较轻度NEC组升高更明显(P<0.05)。结论坏死性小肠结肠炎可导致新生小鼠发生急性脑损伤,其损伤程度与肠道损伤的严重程度相关,可能与神经炎症的增加有关。

Abstract:

ObjectiveTo investigate the effect of necrotizing enterocolitis (NEC) at different severities on brain injury in neonatal mice. MethodsSixty 5-day old C57BL/6 mice were randomly divided into control group (CON group, n=20) and NEC group (n=40). The CON group was breeding with female mice and breast-fed. The NEC group was fed in an incubator, and induced by formula gavage feeding+hypoxia+oral lipopolysaccharide (LPS) to establish the model of NEC. In 4 d after NEC modeling, all pups were sacrificed by cervical decapitation. Their body weight was measured and general conditions were observed. HE staining was used to observe the pathological changes of intestinal tissue. NEC group was divided into mild NEC subgroup and severe NEC subgroup according to the intestinal injury score of ileocecus. Nissl staining was employed to further observe the pathological changes of the corresponding brain tissue. The correlation between the severity of intestinal injury and the number of nerve cells was analyzed with Pearson analysis. The mRNA levels of the inflammatory factors interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) in brain tissues were measured with quantitative real-time PCR (RT-qPCR). Enzyme-linked immunosorbent assay (ELISA) was adopted to detect the protein contents of IL-1β, IL-6 and TNF-α in brain tissues. Immunofluorescence assay was conducted to detect the number of activated microglia and astrocytes in the hippocampus. ResultsCompared with CON group, the NEC group had decreased activities and lower body weight (3.84±1.25 vs 1.76±0.26 g, P<0.05), and serious intestinal damage. The number of nerve cells in the hippocampus were significantly reduced in the NEC group than the CON group (P<0.05), so was in the severe NEC subgroup than that the mild NEC subgroup (P<0.05). Correlation analysis showed that the pathological changes of brain were negatively correlated with the severity of intestinal injury (r=- 0.943, P<0.001). When compared with the CON group, the mRNA and protein levels of IL-1β, IL-6 and TNF-α in brain tissues were significantly elevated (P<0.05), and the numbers of activated microglia and astrocytes were also significantly increased in the NEC group (P<0.05), especially in the severe NEC subgroup (P<0.05). ConclusionNEC can lead to acute brain injury in neonatal mice, and the severity of damage is related to the severity of intestinal injury, which may be related to the increase of neuroinflammation.

参考文献/References:

[1]中国医师协会新生儿科医师分会循证专业委员会.新生儿坏死性小肠结肠炎临床诊治指南(2020)[J].中国当代儿科杂志,2021, 23(1): 1-11.  DOI: 10.7499/j.issn.1008-8830.2011145.
Evidence-Based Medicine Group. Clinical guidelines for the diagnosis and treatment of neonatal necrotizing enterocolitis (2020)[J]. Chin J Contemp Pediatr, 2021, 23(1): 1-11.  DOI: 10.7499/j.issn.1008-8830.2011145.
[2]ZANI A, PIERRO A. Necrotizing enterocolitis: controversies and challenges[J]. F1000Res, 2015, 4: F1000FacultyRev-F1000Faculty1373. DOI: 10.12688/f1000research.6888.1.
[3]NIO D F, SODHI C P, HACKAM D J. Necrotizing enterocolitis: new insights into pathogenesis and mechanisms[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(10): 590-600. DOI:10.1038/nrgastro.2016.119.
[4]MATEI A, MONTALVA L, GOODBAUM A, et al. Neurodevelopmental impairment in necrotising enterocolitis survivors: systematic review and meta-analysis[J]. Arch Dis Child Fetal Neonatal Ed, 2020, 105(4): 432-439. DOI:10.1136/archdischild-2019-317830.
[5]HINTZ S R, KENDRICK D E, STOLL B J, et al. Neurodevelopmental and growth outcomes of extremely low birth weight infants after necrotizing enterocolitis[J]. Pediatrics, 2005, 115(3): 696-703. DOI:10.1542/peds.2004-0569. 
[6]MERHAR S L, RAMOS Y, MEINZEN-DERR J, et al. Brain magnetic resonance imaging in infants with surgical necrotizing enterocolitis or spontaneous intestinal perforation versus medical necrotizing enterocolitis[J]. J Pediatr, 2014, 164(2): 410-412.e1. DOI:10.1016/j.jpeds.2013.09.055.
[7]LODHA A, ASZTALOS E, MOORE A M. Cytokine levels in neonatal necrotizing enterocolitis and long-term growth and neurodevelopment[J]. Acta Paediatr, 2010, 99(3): 338-343. DOI:10.1111/j.1651-2227.2009.01600.x.
[8]ADAMS-CHAPMAN I. Necrotizing enterocolitis and neuro-developmental outcome[J]. Clin Perinatol, 2018, 45(3): 453-466. DOI:10.1016/j.clp.2018.05.014.
[9]CHEN Y, KOIKE Y, MIYAKE H, et al. Formula feeding and systemic hypoxia synergistically induce intestinal hypoxia in experimental necrotizing enterocolitis[J]. Pediatr Surg Int, 2016, 32(12): 1115-1119. DOI:10.1007/s00383-016-3997-8.
[10]DRUCKER N A, JENSEN A R, TE WINKEL J P, et al. Loss of endothelial nitric oxide synthase exacerbates intestinal and lung injury in experimental necrotizing enterocolitis[J]. J Pediatr Surg, 2018, 53(6): 1208-1214. DOI:10.1016/j.jpedsurg.2018.02.087.
[11]HICKEY M, GEORGIEFF M, RAMEL S. Neurodevelop-mental outcomes following necrotizing enterocolitis[J]. Semin Fetal Neonatal Med, 2018, 23(6): 426-432. DOI:10.1016/j.siny.2018.08.005.
[12]EICHENBAUM H. Prefrontal-hippocampal interactions in episodic memory[J]. Nat Rev Neurosci, 2017, 18(9): 547-558. DOI:10.1038/nrn.2017.74.
[13]BRUNSE A, ABBASPOUR A, SANGILD P T. Brain barrier disruption and region-specific neuronal degeneration during necrotizing enterocolitis in preterm pigs[J]. Dev Neurosci, 2018, 40(3): 198-208. DOI:10.1159/000488979.
[14]NIO D F, ZHOU Q J, YAMAGUCHI Y, et al. Cognitive impairments induced by necrotizing enterocolitis can be prevented by inhibiting microglial activation in mouse brain[J]. Sci Transl Med, 2018, 10(471): eaan0237. DOI:10.1126/scitranslmed.aan0237.
[15]ZHOU Q J, NIO D F, YAMAGUCHI Y, et al. Necrotizing enterocolitis induces T lymphocyte-mediated injury in the developing mammalian brain[J]. Sci Transl Med, 2021, 13(575): eaay6621. DOI:10.1126/scitranslmed.aay6621.
[16]NIEMARKT H J, DE MEIJ T G, VAN GANZEWINKEL C J, et al. Necrotizing enterocolitis, gut microbiota, and brain development: role of the brain-gut axis[J]. Neonatology, 2019, 115(4): 423-431. DOI:10.1159/000497420.
[17]BIOUSS G, ANTOUNIANS L, LI B, et al. Experimental necrotizing enterocolitis induces neuroinflammation in the neonatal brain[J]. J Neuroinflam, 2019, 16(1): 97. DOI:10.1186/s12974-019-1481-9.
[18]SUN J, PAN X Y, CHRISTIANSEN L I, et al. Necrotizing enterocolitis is associated with acute brain responses in preterm pigs[J]. J Neuroinflam, 2018, 15(1): 180. DOI:10.1186/s12974-018-1201-x.
[19]DONG Y, SPEER C P. Late-onset neonatal sepsis: recent developments[J]. Arch Dis Child Fetal Neonatal Ed, 2015, 100(3): F257-F263. DOI:10.1136/archdischild-2014-306213.
[20]TIAN F, LIU G R, LI N, et al. Insulin-like growth factor I reduces the occurrence of necrotizing enterocolitis by reducing inflammatory response and protecting intestinal mucosal barrier in neonatal rats model[J]. Eur Rev Med Pharmacol Sci, 2017, 21(20): 4711-4719.
[21]KABBA J A, XU Y, CHRISTIAN H, et al. Microglia: housekeeper of the central nervous system[J]. Cell Mol Neurobiol, 2018, 38(1): 53-71. DOI:10.1007/s10571-017-0504-2.

相似文献/References:

[1]万小红,曾小靓.肺表面活性物质预防早产儿呼吸窘迫综合征的疗效观察[J].第三军医大学学报,2008,30(03):225.
[2]陈霞,何念海.早产儿甲胎蛋白的测定与新生儿高胆红素血症的关系[J].第三军医大学学报,2006,28(13):1446.
[3]赵聪敏,鲁利群.早产儿脑损伤动物模型的研究现状与展望[J].第三军医大学学报,2009,31(22):2167.
[4]李禄全,余加林,陈静宇,等.牛肺表面活性物质治疗早产儿呼吸窘迫综合征对脑血流动力学的影响[J].第三军医大学学报,2010,32(21):2333.
 Li Luquan,Yu Jialin,Chen Jingyu,et al.Effect of bovine pulmonary surfactant on cerebral hemodynamics in premature neonates with respiratory distress syndrome[J].J Third Mil Med Univ,2010,32(17):2333.
[5]廖伟,赵聪敏,温恩懿,等.神经发育支持模式对早产儿体格及神经心理发育的影响[J].第三军医大学学报,2009,31(22):2193.
 LIAO Wei,ZHAO Cong-min,WEN En-yi,et al.Effects of neurodevelopmental support care on growth and neuropsychological development of premature infants[J].J Third Mil Med Univ,2009,31(17):2193.
[6]包蕾,王荞,方静,等.早产儿视网膜病变的彩色多普勒超声诊断与临床眼科随访对比分析[J].第三军医大学学报,2009,31(22):2278.
 BAO Lei,WANG Qiao,FANG Jing,et al.Comparative study on retinopathy of prematurity by color Doppler flow imaging diagnosis and clinical ophthalmology[J].J Third Mil Med Univ,2009,31(17):2278.
[7]廖翎帆,龚华,易明,等.不同起始量肺表面活性物质治疗新生儿呼吸窘迫综合征的多中心临床疗效比较[J].第三军医大学学报,2016,38(04):411.
 Liao Lingfan,Gong Hua,Yi Ming,et al.Difference of multi-center controlled clinical efficacy in treatment of neonatal respiratory distress syndrome with different initial doses of pulmonary surfactant[J].J Third Mil Med Univ,2016,38(17):411.
[8]唐夕琴,徐娜,黄志,等.受孕龄28~30周早产儿脑电图高幅慢波改变对其预后的评估价值及临床意义[J].第三军医大学学报,2013,35(15):1624.
 Tang Xiqin,Xu Na,Huang Zhi,et al.Prognostic value and clinical significance of high-amplitude slow wave changes in video electroencephalogram of preterm infants between 28 and 30 weeks of conceptional age[J].J Third Mil Med Univ,2013,35(17):1624.
[9]李小玉,邓春,苏云娟.98例足月儿、早产儿化脓性脑膜炎临床分析[J].第三军医大学学报,2013,35(19):2105.
 Li Xiaoyu,Deng Chun,Su Yunjuan.Clinical analysis of neonatal purulent meningitis: a retrospective cohort study of 98 cases[J].J Third Mil Med Univ,2013,35(17):2105.
[10]赵聪敏,李为明,温恩懿,等.一例脐部联体儿的术前检查与处理[J].第三军医大学学报,1998,20(04):0.[doi:10.16016/j.1000-5404.1998.04.014 ]

更新日期/Last Update: 2021-09-03