QIU Yu,ZHAO Yueyang,LONG Zhimin,et al.Dynamic changes of femur microarchitecture in ovariectomized mice[J].J Third Mil Med Univ,2021,43(17):1627-1633.

去卵巢小鼠股骨微结构的动态变化研究(/HTML )




Dynamic changes of femur microarchitecture in ovariectomized mice
QIU Yu ZHAO Yueyang LONG Zhimin WANG Kejian XU Ling HE Guiqiong

Department of Prosthodontics, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147; 2Department of Human Anatomy, Neuroscience Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China

R-332; R681.02; R713.6

目的探究去卵巢骨质疏松小鼠术后不同时期股骨微结构的动态变化。方法8周龄C57雌性小鼠分为去卵巢组(ovariectomy,OVX)和假手术组(sham ovariectomy, Sham),并根据术后不同时间将每组小鼠又分为1周、1个月及3个月组,分别代表绝经早、中、晚期。称质量后取小鼠股骨进行HE染色、免疫组织化学染色及Micro-CT扫描分析,评估各组股骨远端松质骨、股骨中段皮质骨微结构及成骨相关蛋白水平变化。结果小鼠松质骨形态参数:与Sham组相比,OVX组术后1周骨微结构未见明显破坏,术后1~3个月骨小梁断裂,骨髓腔增大,CT骨参数除Tb.Th无明显变化外(P>0.05),BV/TV,Tb.N和Tb.Sp均出现显著改变(P<0.01);Sham组中,直到术后3个月才出现较1周组骨量显著减少的表现(P<0.01);OVX各组中骨丢失情况随时间增加而加重(P<0.05,P<0.01)。Runx2表达水平与Micro-CT松质骨分析结果基本一致。皮质骨形态参数:各时段OVX组均未出现较Sham组的明显差异(P>0.05)。结论8周龄C57小鼠在OVX术后1周至1个月松质骨微结构明显受损,早于皮质骨变化,可作为骨质疏松病理机制和防治研究的重点阶段。


ObjectiveTo explore the dynamic changes of femur microstructure in ovariectomized osteoporosis mice at different stages. MethodsFemale C57 mice (8 weeks old) were randomly divided into sham-operation (Sham) and ovariectomy (OVX) groups. Each group was subdivided into 1-week, 1-month and 3-month subgroups on the basis of different postoperative time, which representeing early, middle and late menopause, respectively. The femurs were extracted for HE staining, immunohistochemistry and micro-CT analysis, and the changes in the bone microstructure of cancellous bone in the distal femurs, cortical bone in the middle femurs and the levels of osteogenic associated proteins in each group were evaluated. ResultsCompared with the Sham group, the bone microstructure of the OVX group showed no significant destruction at 1 week after operation, trabecula fracture and bone marrow cavity enlargement from 1 month to 3 months after operation, and significant changes in CT bone parameters BV/TV, Tb.N and Tb.Sp (P<0.01, P<0.001) except Tb.Th (P>0.05). In the Sham group, the bone mass was significantly reduced until 3 months after operation compared with that in the 1-week group (P<0.01). Bone loss in the OVX groups was worsened in a time dependent manner (P<0.05, P<0.01, P<0.001). The expression level of Runx2 by immunohistochemistry was consistent with the results of micro-CT analysis. No significant differences were found in morphologic indices of cortical bone between the Sham subgroups and the OVX subgroups (P>0.05). ConclusionTrabecular bone microarchitecture is impaired progressively after OVX operation in 8-week-old C57 mice from 1 week to 1 month, prior to cortical bone. This period can be regarded as the key time for studies on pathogenesis and prevention and treatment of osteoporosis.


[1]COMPSTON J E, MCCLUNG M R, LESLIE W D. Osteoporosis[J]. Lancet, 2019, 393(10169): 364-376. DOI:10.1016/S0140-6736(18)32112-3. 
[2]YU F, XIA W B. The epidemiology of osteoporosis, associated fragility fractures, and management gap in China[J]. Arch Osteoporos, 2019, 14(1): 1-20. DOI:10.1007/s11657-018-0549-y. 
[3]AZIZIYEH R, MO A, HABIB M, et al. The burden of osteoporosis in four Latin American countries: Brazil, Mexico, Colombia, and Argentina[J]. J Med Econ, 2019, 22(7): 638-644. DOI:10.1080/13696998.2019.1590843. 
[4]BONUCCI E, BALLANTI P. Osteoporosis-bone remodeling and animal models[J]. Toxicol Pathol, 2014, 42(6): 957-969. DOI:10.1177/0192623313512428. 
[5]CONSORTIUM M G S, WATERSTON R H, LINDBLAD-TOH K, et al. Initial sequencing and comparative analysis of the mouse genome[J]. Nature, 2002, 420(6915): 520-562. DOI:10.1038/nature01262. 
[6]CAPECCHI M R.Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century[J]. Nat Rev Genet,2005 ,6(6):507-512. DOI: 10.1038/nrg1619.
[7]HAN S K, KIM D, LEE H, et al. Divergence of noncoding regulatory elements explains gene-phenotype differences between human and mouse orthologous genes[J]. Mol Biol Evol, 2018, 35(7): 1653-1667. DOI:10.1093/molbev/msy056. 
[8]MAYNARD R D, ACKERT-BICKNELL C L. Mouse models and online resources for functional analysis of osteoporosis genome-wide association studies[J]. Front Endocrinol, 2019, 10: 277. DOI:10.3389/fendo.2019.00277. 
[9]WONG K C, PANG W Y, WANG X L, et al. Drynaria fortunei-derived total flavonoid fraction and isolated compounds exert oestrogen-like protective effects in bone[J]. Br J Nutr, 2013, 110(3): 475-485. DOI:10.1017/S0007114512005405. 
[10]YANG L L, ZHANG B, LIU J J,et al.Protective effect of acteoside on ovariectomy-induced bone loss in mice[J]. Int J Mol Sci,2019,20(12):2974.DOI: 10.3390/ijms20122974.
[11]LIANG X X, HOU Z Q, XIE Y L, et al. Icariin promotes osteogenic differentiation of bone marrow stromal cells and prevents bone loss in OVX mice via activating autophagy[J]. J Cell Biochem, 2019, 120(8): 13121-13132. DOI:10.1002/jcb.28585. 
[12]DING Y, JIANG H J, MENG B Y, et al. Sweroside-mediated mTORC1 hyperactivation in bone marrow mesenchymal stem cells promotes osteogenic differentiation[J]. J Cell Biochem, 2019, 120(9): 16025-16036. DOI:10.1002/jcb.28882. 
[13]JANG S A, HWANG Y H, KIM T,et al.Anti-osteoporotic and anti-adipogenic effects of the water extract of Drynaria Roosii Nakaike in ovariectomized mice fed a high-fat diet[J]. Molecules, 2019,24(17):3051. DOI: 10.3390/molecules24173051.
[14]ZHOU S, WANG G H, QIAO L, et al. Age-dependent variations of cancellous bone in response to ovariectomy in C57BL/6J mice[J]. Exp Ther Med, 2018, 15(4): 3623-3632. DOI:10.3892/etm.2018.5839. 
[15]WANG J M, HOU X, ADEOSUN S,et al.A dominant negative ERβ splice variant determines the effectiveness of early or late estrogen therapy after ovariectomy in rats[J]. PLoS ONE, 2012,7(3):e33493. DOI: 10.1371/journal.pone.0033493.
[16]DANIELSEN C C, MOSEKILDE L, SVENSTRUP B. Cortical bone mass, composition, and mechanical properties in female rats in relation to age, long-term ovariectomy, and estrogen substitution[J]. Calcif Tissue Int, 1993, 52(1): 26-33. DOI:10.1007/BF00675623. 
[17]CAO J, VENTON L, SAKATA T, et al.Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice[J]. J Bone Miner Res,2003 ,18(2):270-277. DOI: 10.1359/jbmr.2003.18.2.270.
[18]BERGMAN R J, GAZIT D, KAHN A J, et al. Age-related changes in osteogenic stem cells in mice[J]. J Bone Miner Res, 1996, 11(5): 568-577. DOI:10.1002/jbmr.5650110504. 
[19]商敏. 雌激素受体α及β亚型与绝经后骨质疏松的关系[J]. 中国骨质疏松杂志, 2010, 16(4): 295-299. DOI:10. 3969/j. issn.1006-7108.2010.04.016.
SHANG M. The relationship between ERα, ERβ and postmenopausal osteoporosis[J]. Chin J Osteoporos, 2010, 16(4): 295-299. DOI:10. 3969/j. issn.1006-7108.2010.04.016. 
[20]陈伟健, 晋大祥, 谢炜星, 等. Runx2基因参与骨代谢相关通路的研究进展[J]. 中国骨质疏松杂志, 2018, 24(4): 557-560. DOI:10. 3969/j.issn.1006-7108.2018.04.028.
CHEN W J, JIN D X, XIE W X, et al. Advance in the research of Runx2 gene in bone metabolism-related pathway[J]. Chin J Osteoporos, 2018, 24(4): 557-560. DOI:10. 3969/j.issn.1006-7108.2018.04.028.
[21]周年, 林鑫, 陆杨. SIRT1通过β-catenin信号调控干细胞成软骨与成骨分化[J]. 第三军医大学学报, 2020, 42(13): 1308-1314. DOI:10.16016/j.1000-5404.202002213.
ZHOU N, LIN X, LU Y. SIRT1 regulates osteogenic and chondrogenic differentiation of stem cells by β-catenin signal[J]. J Third Mil Med Univ, 2020, 42(13): 1308-1314. DOI:10.16016/j.1000-5404. 202002213.
[22]HUANG R L, YUAN Y, TU J, et al.Opposing TNF-α/IL-1β- and BMP-2-activated MAPK signaling pathways converge on Runx2 to regulate BMP-2-induced osteoblastic differentiation[J]. Cell Death Dis,2014 ,5(4):e1187. DOI: 10.1038/cddis.2014.101.


 FAN Wei,YANG Yu-xin,CHEN Juan,et al.Bone microstructure changes and bone BMP-2 expression in rats at early period of diabetes[J].J Third Mil Med Univ,2007,29(17):1053.

更新日期/Last Update: 2021-09-03