[1]陈小玲,唐峰,贾立峰,等.老年性聋小鼠内耳突触调控钾通道基因的筛选与鉴定[J].第三军医大学学报,2020,42(08):765-771.
 CHEN Xiaoling,TANG Feng,JIA Lifeng,et al.Screening and identification of synaptic regulatory genes in the inner ear of mice with presbycusis[J].J Third Mil Med Univ,2020,42(08):765-771.
点击复制

老年性聋小鼠内耳突触调控钾通道基因的筛选与鉴定(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第08期
页码:
765-771
栏目:
基础医学
出版日期:
2020-04-30

文章信息/Info

Title:
Screening and identification of synaptic regulatory genes in the inner ear of mice with presbycusis
作者:
陈小玲唐峰贾立峰李海李静雅袁伟
陆军军医大学(第三军医大学)第一附属医院耳鼻咽喉-头颈外科
Author(s):
CHEN Xiaoling TANG Feng JIA Lifeng LI Hai LI Jingya YUAN Wei

Department of Otolaryngology, Head and Neck Surgery, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China

关键词:
老年性聋内耳突触转录组测序钾离子通道
Keywords:
presbycusis inner ear synapse transcriptome sequencing potassium channel
分类号:
R322.923;R394.3;R764.436
文献标志码:
A
摘要:

目的通过筛选内耳突触调控基因,探索老年性聋发生过程中突触损伤特点。方法利用转录组测序技术检测成年组(4周)和老年组(40周)C57BL/6J小鼠内耳基底膜,筛选差异表达基因(differentially expression genes, DEGs)。分析DEGs基因本体(GO)功能富集,京都基因和基因组百科全书(KEGG)通路富集情况,并筛选突触调控差异基因,最后利用实时荧光定量PCR及免疫荧光染色验证结果。结果共筛选出3 267个DEGs,其中下调1 521个,上调1 746个(FC≥1.5,P<0.05)。功能富集显示,下调基因主要参与电压门控离子通道活性调控和突触调控,上调基因主要参与免疫调控。筛选出突触调控基因64个,其中6个钾通道基因Kcnq2,Kcnk3,Kcnmb4,Kcnk9,Kcnh5,Kcnc2富集度最高。qRT-PCR验证了6个调控突触的钾通道基因在不同年龄组内耳的差异表达;免疫荧光显示KCNQ2、KCNMB4在老年鼠内耳表达明显下降。结论筛选了老年性聋突触调控基因,其中6个钾通道基因表达明显下降,可能是导致老年性聋突触改变的重要因素。

Abstract:

ObjectiveTo screen synaptic regulatory genes in the inner ear and explore the mechanism of synaptic damage in presbycusis. MethodsWe examined the mRNA expression of the genes in the basilar membrane of the inner ear of adult (4-week-old) mice and aged (40-week-old) mice using transcriptome sequencing. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of the differentially expressed genes (DEGs) were analyzed to identify synaptic regulatory DEGs, and the results were verified using real-time quantitative PCR and immunofluorescence staining. ResultsWe identified a total of 3 267 DEGs, including 1 521 down-regulated genes and 1 746 up-regulated genes (FC≥1.5, P<0.05). GO function enrichment analysis showed that the down-regulated DEGs mainly participated in the regulation of voltage-gated cation channel activity and synaptic function, and the up-regulated DEGs were mostly responsible for regulation of immune functions. We screened 64 synaptic regulatory genes, among which 6 down-regulated potassium channel genes (Kcnq2, Kcnk3, Kcnmb4, Kcnk9, Kcnh5, and Kcnc2) had the highest enrichment. qRT-PCR verified the differential expression of the 6 genes in the inner ear of mice at different ages; immunofluorescence assay demonstrated that the expression of KCNQ2 and KCNMB4 were significantly decreased in the inner ear of aged mice. ConclusionAmong the synaptic regulatory genes screened in mice with presbycusis, 6 potassium channel genes show significantly decreased expressions in the inner ear of aged mice, suggesting their important involvement in synaptic changes in presbycusis. 

参考文献/References:

[1]TAWFIK K O, KLEPPER K, SALIBA J, et al. Advances in understanding of presbycusis[J]. J Neurosci Res, 2019. DOI: 10.1002/jnr.24426.
[2]RIQUELME R, CEDIEL R, CONTRERAS J, et al. A comparative study of age-related hearing loss in wild type and insulin-like growth factor I deficientmice[J]. Front Neuroanat, 2010, 4:  27. DOI: 10.3389/fnana.2010.00027.
[3]SAFIEDDINE S, EL-AMRAOUI A, PETIT C. The auditory hair cell ribbon synapse:  from assembly tofunction[J]. Annu Rev Neurosci, 2012, 35:  509-528. DOI: 10.1146/annurev-neuro-061010-113705.
[4]SERGEYENKO Y, LALL K, LIBERMAN M C, et al. Age-related cochlearsynaptopathy:  an early-onset contributor to auditory functional decline[J]. J Neurosci, 2013, 33(34):  13686-13694. DOI: 10.1523/JNEUROSCI.1783-13.2013.
[5]MOSER T, PREDOEHL F, STARR A. Review of hair cell synapse defects in sensorineural hearingimpairment[J]. Otol Neurotol, 2013, 34(6):  995-1004. DOI: 10.1097/MAO.0b013e3182814d4a
[6]LIBERMAN M C, KUJAWA S G. Cochlear synaptopathy in acquired sensorineural hearing loss:  Manifestations and mechanisms[J]. Hear Res, 2017, 349:  138-147.DOI: 10.1016/j.heares.2017.01.003.
[7]KUJAWA S G, LIBERMAN M C.Synaptopathy in the noise-exposed and aging cochlea:  Primary neural degeneration in acquired sensorineural hearing loss[J]. Hear Res, 2015, 330(Pt B):  191-199. DOI: 10.1016/j.heares.2015.02.009.
[8]WANG Z, GERSTEIN M, SNYDER M. RNA-Seq:  a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009, 10(1):  57-63. DOI: 10.1038/nrg2484.
[9]SCHRAUWEN I, HASIN-BRUMSHTEIN Y, CORNEVEAUX JJ, et al. A comprehensive catalogue of the coding and non-coding transcripts of the human inner ear[J]. Hear Res, 2016, 333:  266-274. DOI: 10.1016/j.heares.2015.08.013.
[10]HAN J H, WU H W, HU H Y, et al. Characterization of the transcriptome of hair cell regeneration in the neonatal mouseutricle[J]. Cell Physiol Biochem, 2018, 51(3):  1437-1447. DOI: 10.1159/000495592.
[11]GUO Y, ZHANG P, SHENG Q H, et al. LncRNA expression in the auditory forebrain during postnatal development[J]. Gene, 2016, 593(1):  201-216. DOI: 10.1016/j.gene.2016.08.027.
[12]李胜利, 武坤毅, 任晓勇. 年龄相关听力损失DBA/2J小鼠耳蜗毛细胞马达蛋白-prestin表达下调与耳聋的关系[J]. 中华耳科学杂志, 2018, 16(4):  562-569. DOI: 10.3969/j.issn.1672-2922.2018.04.025. 
LI S L, WU K Y, REN X Y. Down-regulated prestin expression in cochlear outer hair cells in DBA/2J mice with age-related hearing loss[J]. Chin J Otol, 2018, 16(4): 562-569.DOI: 10.3969/j.issn.1672-2922.2018.04.025.
[13]OHLEMILLER K K. Age-related hearing loss:  the status of Schuknecht’s typology[J]. Curr Opin Otolaryngol Head Neck Surg, 2004, 12(5):  439-443. DOI: 10.1097/01.moo.0000134450.99615.22.
[14]魏薇, 杨丽辉, 熊伟, 等. 老年性聋小鼠耳蜗带状突触损伤特点及机制研究[J]. 中华耳科学杂志, 2019, 17(2):  198-202.
WEI W, YANG L H, XIONG W, et al. Characteristics of cochlear ribbon synapses damage in aging mice and possiblemechanisms[J]. Chin J Otol, 2019, 17(2):  198-202.
[15]李晓瑞, 蒋兴旺, 张延平. C57B L/6J 小鼠随年龄增长耳蜗内毛细胞带状突触数量变化的观察[J]. 听力学及言语疾病杂志, 2015, 23(2):  176-180. DOI: 10.3969/j.issn.1006-7299.2015.02.014.
LI X R, JIANG X W, ZHANG Y P. The changes of the number of ribbon synapse in inner hair cells of C57BL/6J mice with age[J]. J Audiol Speech Pathol, 2015, 23(2):  176-180. DOI: 10.3969/j.issn.1006-7299.2015.02.014.
[16]NILIUS B, FLOCKERZI V. Mammalian transient receptor potential (TRP) cation channels.Preface[J]. Handb Exp Pharmacol, 2014, 223:  v-vi.
[17]STEEL K P, KROS C J. A genetic approach to understanding auditory function[J]. Nat Genet, 2001, 27(2):  143-149. DOI: 10.1038/84758.
[18]CONTINI D, PRICE S D, ART JJ. Accumulation of K+ in the synaptic cleft modulates activity by influencing both vestibular hair cell and Calyx afferent in the turtle[J]. J Physiol (Lond), 2017, 595(3):  777-803. DOI: 10.1113/JP273060.
[19]WANG JJ, LI Y. KCNQ potassium channels in sensory system and neural circuits[J]. Acta Pharmacol Sin, 2016, 37(1):  25-33. DOI: 10.1038/aps.2015.131.
[20]SOH H, PARK S, RYAN K, et al. Deletion of KCNQ2/3 potassium channels from PV+ interneurons leads to homeostatic potentiation of excitatorytransmission[J]. Elife, 2018, 7:  e38617. DOI: 10.7554/eLife.38617.
[21]SUN W, LIU J, ZHANG C, et al. Potassium channel activator attenuates salicylate-induced cochlear hearing loss potentially amelioratingtinnitus[J]. Front Neurol, 2015, 6:  77. DOI: 10.3389/fneur.2015.00077.
[22]FETTIPLACE R. Hair cell transduction, tuning, and synaptic transmission in the mammaliancochlea[J]. Compr Physiol, 2017, 7(4):  1197-1227. DOI: 10.1002/cphy.c160049.
[23]ROBITAILLE R, CHARLTON M P. Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassiumchannels[J]. J Neurosci, 1992, 12(1):  297-305.
[24]LEE U S, CUI J M. BK channel activation:  structural and functionalinsights[J]. Trends Neurosci, 2010, 33(9):  415-423. DOI: 10.1016/j.tins.2010.06.004.

相似文献/References:

[1]卓贤露,姜振东,魏运军,等.大鼠Otos基因重组腺病毒载体的构建和鉴定[J].第三军医大学学报,2008,30(06):533.
 ZHUO Xian-lu,JIANG Zhen-dong,WEI Yun-jun,et al.Construction of recombinant adenovirus carrying Otos[J].J Third Mil Med Univ,2008,30(08):533.
[2]陈轶,戚跃勇,廖翠微,等.中内耳多层螺旋CT扫描技术的临床价值[J].第三军医大学学报,2008,30(16):1505.
 CHEN Yi,QI Yue-yong,LIAO Cui-wei,et al.Diagnostic value of multi-slice spiral CT for lesions in middle and inner ears[J].J Third Mil Med Univ,2008,30(08):1505.
[3]邓安春,杨仕明,黄德亮,等.C57BL/6小鼠内耳前庭末梢器官的形态发育过程及Myosin Ⅵ的表达[J].第三军医大学学报,2012,34(10):924.
 Deng Anchun,Yang Shiming,Huang Deliang,et al.Morphological development process of periphery vestibular organs in inner ear and expression of myosin VI in C57BL/6 mice[J].J Third Mil Med Univ,2012,34(08):924.
[4]魏运军,张学渊.豚鼠内耳微血管内皮细胞的跨细胞电阻[J].第三军医大学学报,2002,24(04):0.[doi:10.16016/j.1000-5404.2002.04.018 ]
 WEI Yun jun,ZHANG Xue yuan.[J].J Third Mil Med Univ,2002,24(08):0.[doi:10.16016/j.1000-5404.2002.04.018 ]
[5]李朝军,刘兆华,王锦玲,等.豚鼠内耳上皮细胞Na~+/K~+-ATP酶活性细胞化学定位[J].第三军医大学学报,1995,17(04):0.[doi:10.16016/j.1000-5404.1995.04.036 ]

更新日期/Last Update: 2020-04-23