[1]蔡越,罗浩,彭晓玉.TSPO调控肾脏血管紧张素Ⅱ1型受体表达促进原发性高血压大鼠血压升高[J].第三军医大学学报,2018,40(24):2222-2228.
 CAI Yue,LUO Hao,PENG Xiaoyu.Translocator protein promotes renal angiotensin Ⅱ type 1 receptor expression and increases blood pressure in spontaneously hypertensive rats[J].J Third Mil Med Univ,2018,40(24):2222-2228.
点击复制

TSPO调控肾脏血管紧张素Ⅱ1型受体表达促进原发性高血压大鼠血压升高(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第24期
页码:
2222-2228
栏目:
基础医学
出版日期:
2018-12-30

文章信息/Info

Title:
Translocator protein promotes renal angiotensin Ⅱ type 1 receptor expression and increases blood pressure in spontaneously hypertensive rats
作者:
蔡越罗浩彭晓玉
陆军军医大学(第三军医大学)第三附属医院野战外科研究所心血管内科,重庆市心血管病研究所;重症医学科;95877部队医院内科
Author(s):
CAI Yue LUO Hao PENG Xiaoyu

Department of Cardiology, Chongqing Institute of Cardiology, Intensive Care Unit, Institute of Surgery Research, Third Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042; Department of Internal Medicine,  Hospital of Troop 95877, Jiuquan, Gansu Province, 735018, China

关键词:
TSPO线粒体高血压血管紧张素Ⅱ1型受体
Keywords:
translocator protein mitochondria hypertension angiotensin II type 1 receptor
分类号:
R341;R363.21;R544.1
文献标志码:
A
摘要:

目的    探讨线粒体转位蛋白TSPO(translocator protein,TSPO)对肾脏血管紧张素Ⅱ1型受体表达及功能的影响,为高血压的防治提供新的思路。方法    14周龄雄性正常血压大鼠(Wistar-Kyoto,WKY;体质量250~280 g)4只、雄性原发性高血压大鼠(spontaneously hypertensive rats,SHR;体质量250~280 g)16只,检测WKY和SHR肾脏TSPO蛋白表达水平,TSPO肾脏分布及细胞内定位。12只SHR随机分成TSPO抑制组和对照组(n=6),TSPO抑制组每日腹腔注射Ro5-4864(TSPO抑制剂) 0.5 mg/kg,对照组注射等量生理盐水。采用无创鼠尾测压仪测血压;代谢笼收集24 h尿量;肾上腺动脉灌注血管紧张素1型受体拮抗剂(坎地沙坦)并检测AT1R功能及肾脏AT1R蛋白表达水平。采用Ro5-4864浓度和时间梯度处理肾脏近曲小管上皮细胞(renal proximal tubule,RPT),检测AT1R蛋白表达水平。结果    TSPO定位于线粒体;与WKY比较,SHR肾脏皮质特别是近曲小管TSPO表达明显增加。TSPO抑制组24 h尿量[(21.7±4.5)vs.(13.5±3.5)mL/kg]及尿钠排泄率[(1.5±0.3)vs.(1.0±0.2)mmol/kg]均高于对照组(P<0.05)。肾上腺动脉灌注坎地沙坦后,TSPO抑制组尿流速[(5.9±2.0)vs.(13.3±2.5)μL/min]及尿钠排泄率[(0.6±0.2)vs.(1.6±0.6)mmol/min]均明显低于对照组(P<0.05)。TSPO抑制组肾脏AT1R蛋白的表达显著低于对照组(P<0.05)。PRT细胞AT1R蛋白表达与Ro5-4864呈浓度及时间依赖性。结论    TSPO可能通过促进肾脏AT1R表达及功能增强,引起水钠潴留而促进SHR血压升高。

Abstract:

Objective To investigate the role of mitochondrial translocator protein (TSPO) in regulating the expression and function of renal angiotensin II type 1 receptor (AT1R) in hypertensive rats and provide evidence for devising new strategies for the prevention and treatment of hypertension. Methods Four male Wistar-Kyoto (WKY) rats (14 weeks old, weight 250-280 g), and 4 age-matched male spontaneously hypertensive rats (SHR, weight 250-280 g) were examined for the expression, renal distribution and intracellular localization of TSPO. Another 12 SHR were randomly divided into TSPO inhibition group (n=6) and control group (n=6) for daily intraperitoneal injection of Ro5-4864 (a TSPO inhibitor) at 0.5 mg/kg and an equal volume of normal saline, respectively. Blood pressure of the rats was monitored with non-invasive tail cuff blood pressure equipment, and the volume of 24-h urine was collected using metabolic cages. The changes in the function and renal expression of AT1R were detected using Western blotting after adrenal artery infusion of candesartan, an AT1R antagonist. The changes in the expression of AT1R in response to treatments with temporal and concentration gradients of Ro5-4864 were also detected in the renal proximal tubule (RPT) cells using Western blotting. Results TSPO expression was located in the mitochondria. Compared with WKY rats, SHR exhibited significantly increased expression of TSPO in the renal cortex, especially in the proximal convoluted tubules (P<0.05). Compared with the control SHR, the Ro5-4864-treated SHR had significantly increased 24-h urine volume (21.7±4.5 vs 13.5±3.5 mL/kg) and urinary sodium excretion (1.5±0.3 vs 1.0±0.2 mmol/kg) (P<0.05). In Ro5-4864treated SHR, adrenal artery infusion of candesartan caused obvious reductions in urine flow rate (5.9±2.0 vs 13.3±2.5 μL/min) and urinary sodium excretion rate (0.6±0.2 vs 1.6±0.6 mmol/min) with also significantly decreased renal expression of AT1R as compared with the control SHR (P<0.05). In PRT cells, Ro5-4864 treatment reduced the expression of AT1R protein in a concentration-and time-dependent manner. Conclusion TSPO enhances the renal expression and function of AT1R, which causes sodium and water retention and leads to increased blood pressure in SHR.

参考文献/References:

[1]lu J, lu Y, wang X,et al. Prevalence, awareness, treatment, and control of hypertension in China:  data from 1.7 million adults in a populationbased screening study (China PEACE Million Persons Project)[J]. Lancet, 2017, 390(10112):  2549-2558. DOI: 10.1016/S01406736(17)324789.
[2]TAMURA K, WAKUI H, AZUSHIMA K, et al. Angiotensin II type 1 receptor binding molecule ATRAP as a possible modulator of renal sodium handling and blood pressure in pathophysiology[J]. Curr Med Chem, 2015, 22(28):  3210-3216. DOI: 10.2174/0929867322666150821095036.
[3]SALEEM M, PiOKKUNURI I, ASGHAR M. Superoxide increases angiotensin II AT1 receptor function in human kidney2 cells[J]. FEBS Open Bio, 2016, 6(12):  1273-1284. DOI: 10.1002/22115463.
[4]TANG G, ZHANG C, JU Z, et al. The mitochondrial membrane protein FgLetm1 regulates mitochondrial integrity, production of endogenous reactive oxygen species and mycotoxin biosynthesis in Fusarium graminearum: function of Fg Letm 1 in Fusarium graminearum [J]. Mol Plant Pathol, 2018, 19(7):  1595-1611. DOI: 10.1111/mpp.12633.
[5]PAN J, ZhANG J, ZhANG X, et al. Role of microRNA29b in angiotensin IIinduced epithelialmesenchymal transition in renal tubular epithelial cells[J]. Int J Mol Med, 2014, 34(5):  1381-1387. DOI: 10.3892/ijmm.2014.1935.
[6]BRIBES E, CASELLAS P, VIDAL H, et al. Peripheral  benzodiazepine receptor mapping in rat kidney. Effects of angiotensin IIinducedhypertension[J]. J Am Soc Nephrol, 2002, 13(1):  1-9.
[7]DRUGAN R C. Peripheralbenzodiazepine receptors:  molecular pharmacology to possible physiological significance in stressinduced hypertension[J]. Clin Neuropharmacol, 1996, 19(6):  475-496.
[8]彭晓玉, 罗浩, 王新全, 等. 孕期炎症刺激对子代大鼠肾脏血管紧张素Ⅱ1型受体表达及功能的影响[J]. 第三军医大学学报,  2016, 38(16):  1815-1819. DOI:  10.16016/j.10005404.201512082.
PENG X Y,LUO H, WANG X Q,et al. Effect of LPS exposure during pregnancy on expression and function of renal angiotensin Ⅱ type 1 receptor in adult rat offsprings[J]. J Third Mil Med Univ,2016,38(16): 1815-1819. DOI:  10.16016/j.10005404.201512082.
[9]AllISON S J. Hypertension:  IL1 receptorinduced sodium reabsorption in hypertension[J]. Nat Rev Nephrol, 2016, 12(3):  126. DOI: 10.1038/nrneph.2016.1.
[10]WANG X, LUO H, CHEN C, et al. Prenatal lipopolysaccharide exposure results in dysfunction of the renal dopamine D1 receptor in offspring[J]. Free Radic Biol Med, 2014,76: 242-250. DOI: 10.1016/j.freeradbiomed.2014.08.010.
[11]CHIEN S J, LIN K M, KUO H C, et al. Two different approaches to restore renal nitric oxide and prevent hypertension in young spontaneously hypertensive rats:  lcitrulline and nitrate[J]. Transl Res, 2014, 163(1): 43-52. DOI: 10.1016/j.trsl.2013.09.008.
[12]SARKAR O, LI Y, ANANDSRIVASTAVA M B. Nitric oxide attenuates overexpression of Giα proteins in vascular smooth muscle cells from SHR:  Role of ROS and ROSmediated signaling[J]. PLoS One, 2017,12(7): e0179301. DOI: 10.1371/journal.pone.0179301.eCollection 2017.
[13]KORNFELD O S, HWANG S, DISATNIK M H, et al. Mitochondrial reactive oxygen species at the heart of the matter:  new therapeutic approaches for cardiovascular diseases[J]. Circ Res, 2015,116(11):  1783-1799. DOI: 10.1161/CIRCRESAHA.116.305432.
[14]GATLIFF J, EAST D, CROSBY J, et al. TSPO interacts with VDAC1 and triggers a ROSmediated inhibition of mitochondrial quality control[J]. Autophgy, 2014, 10(12):  2279-2296. DOI:  10.4161/15548627.2014.991665.
[15]LUO H, WANG X, WANG J, et al. Chronic NFκB blockade improves renal angiotensin II type 1 receptor functions and reduces blood pressure in Zucker diabetic rats[J]. Cardiovasc Diabetol. 2015,14: 76. DOI: 10.1186/s1293301502397.
[16]JAVKHEDKAR A A, BANDAY A A. Antioxidant resveratrol restores renal sodium transport regulation in SHR[J]. Physiol Rep, 2015, 3(11). pii: e12618. DOI: 10.14814/phy2.12618.

相似文献/References:

[1]李梦侠,王东,向德兵,等.电离辐射诱导骨肉瘤细胞DNA损伤修复蛋白APE1线粒体定位研究[J].第三军医大学学报,2007,29(15):1458.
 LI Meng-xia,WANG Dong,XIANG De-bing,et al.Mitochondrial translocation of DNA damage and repair protein APE1 in human osteosarcoma cell after ionizing radiation[J].J Third Mil Med Univ,2007,29(24):1458.
[2]高文祥,黄缄,高钰琪,等.低氧调节大鼠骨骼肌线粒体呼吸链复合体非协同性表达[J].第三军医大学学报,2008,30(03):223.
 GAO Wen-xiang,HUANG Jian,GAO Yu-qi,et al.Hypoxia induced non-concordant expression of gastrocnemius mitochondrial electron transport chain complexes in Wistar rats[J].J Third Mil Med Univ,2008,30(24):223.
[3]米娜,杨陟华,潘秀颉,等.卷烟烟气对细胞线粒体氧化损伤的研究[J].第三军医大学学报,2008,30(03):257.
 MI Na,YANG Zhi-hua,PAN Xiu-jie,et al.Oxidative damage of cellular mitochondria by cigarette smoke[J].J Third Mil Med Univ,2008,30(24):257.
[4]黄河,肖颖彬,杨天德,等.二氮嗪预处理对大鼠缺血性损伤心肌线粒体功能的保护作用[J].第三军医大学学报,2008,30(09):807.
 HUANG He,XIAO Ying-bin,YANG Tian-de,et al.Preconditioning with mitochondrial ATP-sensitive potassium channel opener, diazoxide, protects the myocardial mitochondial functions after ischemic injury in rats[J].J Third Mil Med Univ,2008,30(24):807.
[5]杨涌涛,陈康宁,贺伟峰,等.正常与脑缺血大鼠脑皮质线粒体的比较蛋白质组学研究[J].第三军医大学学报,2008,30(10):964.
 YANG Yong-tao,CHEN Kang-ning,HE Wei-feng,et al.Comparative proteomic analysis on cerebral cortex mitochondria between ischemic and normal cerebral contex in rats[J].J Third Mil Med Univ,2008,30(24):964.
[6]何秀娟,许蜀闽,张涛,等.缺氧时肺动脉平滑肌细胞膜电位、细胞质及线粒体Ca2+的动态变化[J].第三军医大学学报,2007,29(15):1477.
 HE Xiu-juan,XU Shu-min,ZHANG Tao,et al.Dynamic changes of membrane potentials, cytoplasmic and mitochondrial Ca2+ in cultured pulmonary artery smooth muscle cells exposed to hypoxia[J].J Third Mil Med Univ,2007,29(24):1477.
[7]潘峰,孙玮,路菊,等.高效液相色谱法检测大鼠脑线粒体的腺苷酸[J].第三军医大学学报,2006,28(24):2481.
[8]王通,曾耀英,何贤辉,等.阻断p38途径对地塞米松诱导的胸腺细胞凋亡的影响[J].第三军医大学学报,2006,28(16):1667.
[9]陈平,梁立平,杨杰.线粒体氧化应激及其在神经退行性疾病神经细胞凋亡中的作用[J].第三军医大学学报,2006,28(16):1726.
[10]邝勇,黄跃生.微管损伤与缺氧心肌细胞线粒体损害的关系研究[J].第三军医大学学报,2006,28(15):1547.

更新日期/Last Update: 2019-01-02