[1]郭丹,汪星月,谭米肖,等.声敏型脂质纳米粒联合低功率聚焦超声对HepG2细胞增殖的影响及其体外CT成像的实验研究[J].第三军医大学学报,2018,40(23):2180-2189.
 GUO Dan,WANG Xingyue,TAN Mixiao,et al.Effect of sound sensitive nano-liposomes combined with low intensity focused ultrasound on proliferation of HepG2 cells and its CT imaging in vitro[J].J Third Mil Med Univ,2018,40(23):2180-2189.
点击复制

声敏型脂质纳米粒联合低功率聚焦超声对HepG2细胞增殖的影响及其体外CT成像的实验研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第23期
页码:
2180-2189
栏目:
基础医学
出版日期:
2018-12-15

文章信息/Info

Title:
Effect of sound sensitive nano-liposomes combined with low intensity focused ultrasound on proliferation of HepG2 cells and its CT imaging in vitro
作者:
郭丹汪星月谭米肖刘明珠冉海涛王志刚
重庆医科大学超声分子影像重庆市重点实验室;重庆医科大学附属第二医院超声科
Author(s):
GUO Dan WANG Xingyue TAN Mixiao LIU Mingzhu RAN Hantao WANG Zhigang

Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing Medical University, Chongqing, 400016; Department of Ultrasonography, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China

关键词:
声敏型脂质纳米粒低功率聚焦超声声动力治疗联合化疗CT成像
Keywords:
sound sensitive nano-liposomes low-intensity focused ultrasound sonodynamic therapy combination chemotherapy CT imaging
分类号:
R454.3; R73-36; R944.9
文献标志码:
A
摘要:

目的制备一种载血卟啉单甲醚(hematoporphyrin monomethyl ether, HMME)包裹全氟溴辛烷(1-Bromoheptadecafluorooctane, PFOB)及阿霉素(doxorubicin, DOX)的声敏型脂质纳米粒(sound sensitive nanoliposomes, SNLs),探究其联合低功率聚焦超声(low intensity focused ultrasound, LIFU)体外释药、产生活性氧的能力以及对HepG2细胞增殖的影响,和其体外CT成像的能力。方法采用薄膜水化法制备SNL;检测其一般性质;高效液相色谱法检测其体外释药;荧光分光光度计和激光共聚焦显微镜观察其产生活性氧的能力;CCK8实验检测其对HepG2细胞增殖的影响,CT观察其体外CT成像。结果成功制备SNL,粒径为(282.53±6.95)nm;LIFU处理8h内SNL释放阿霉素达(83.45±2.97)%,释药速度随LIFU强度提高而加快;以DPBF(1,3二苯基异苯并呋喃)为活性氧探针,产生活性氧的相对量随SNL中血卟啉单甲醚增加及LIFU强度增高而增多;以DCFHDA(2′,7′二氯荧光黄双乙酸盐)为活性氧探针,激光共聚焦观察显示SNL+LIFU组较SNL组绿色荧光强;CCK8检测结果显示SNL+LIFU组的细胞存活率明显较DOX组,载血卟啉单甲醚包裹全氟溴辛烷的脂质纳米粒(hematoporphyrin monomethyl ether nanoliposomes, HNL)+LIFU组和SNL组低(P<0.05),可见SNL+LIFU明显增强了对HepG2细胞生长的抑制作用;CT成像结果显示SNL的CT值较对照组和空白组高,且CT值随PFOB浓度增大而增高。结论成功制备的声敏型脂质纳米粒的声动力效果呈HMME浓度及LIFU强度依赖性,药物释放速度受LIFU控制,可联合化疗及声动力治疗增强HepG2细胞生长的抑制效果,同时具有良好的CT成像效果。

Abstract:

ObjectiveTo prepare a sound sensitive nano-liposomes (SNLs) loaded with hematoporphyrin monomethyl ether (HMME), 1-bromoheptadecafluorooctane (PFOB) and doxorubicin (DOX), and to investigate their abilities in releasing drugs, generating reactive oxygen species (ROS) and inhibiting HepG2 cells proliferation under low intensity focused ultrasound (LIFU) and explore its CT imaging in vitro.  MethodsSNLs were prepared by membrane hydration, and their basic features were tested. After LIFU, the drug-release of SNLs was detected by high performance liquid chromatography (HPLC). The ability of SNLs to produce ROS was detected via fluorescence spectrophotometry and observed via laser confocal microscopy. The proliferation of HepG2 cells was detected by CCK-8 assay and CT imaging was observed by Philips Ingenuity CT scanner.  ResultsSNLs were successfully prepared with their particle size of 282.53±6.95 nm. Under LIFU irradiation within 8 h, the nano-liposomes released (83.45±2.97)% DOX, and the releasing speed was increased with the increase of LIFU intensity. With DPBF as ROS probe, the relative amount of produced ROS was increased as the dose of HMME or the intensity of LIFU rose. When DCFHDA was used as ROS probe, the green fluorescence in the HepG2 cells treated with SNLs+LIFU was brighter than those treated with SNLs alone. The results of CCK-8 assay indicated that SNL+LIFU treatment decreased the cell viability than the cells treated with DOX or SNLs alone, and HMME nano-liposomes (HNL)+LIFU (P<0.05), indicating that SNL+LIFU treatment enhancing the inhibition on HepG2 cells proliferation. The CT value in SNL was higher than it in control group or blank group, and the value was increased as the increase of PFOB dose.  ConclusionThe sonodynamic effect of our prepared SNLs is in a HMME-dose and LIFU-intensity dependent manner. LIFU can prompt drug release in the nano-liposomes. SNLs+LIFU combined with sonodynamic therapy and chemotherapy enhances the inhibition on HepG2 cells proliferation. Besides, SNL can be used in CT imaging in vitro.

参考文献/References:

[1]DA MOTTA GIRARDI D, CORREA T S, CROSARA TEIXEIRA M, et al.Hepatocellular carcinoma:review of targeted and immune therapies[J]. J Gastrointest Cancer,2018,49(3):227-236.DOI:10.1007/s1202901801214.
[2]广东省抗癌协会肝癌专业委员会.肝癌多学科联合治疗策略与方法——广东专家共识(2)[J].临床肝胆病杂志, 2014,30(11):1116-1119.DOI:10.3969/j.issn.10015256.2014.11.005.
Society of Liver Cancer,Guangdong Provincial AntiCancer Association. Strategy and method of multidisciplinary team for comprehensive treatment of liver cancerconsensus of experts in Guangdong,China (2)[J].J Clin Hepatol,2014,30(11):1116-1119. DOI:10.3969/j.issn.1001-5256.2014.11.005.
[3]WAN G, LIU Y, SHI S, et al. Hematoporphyrin and doxorubicin coloaded nanomicelles for the reversal of drug resistance in human breast cancer cells by combining sonodynamic therapy and chemotherapy [J]. RSC Advances,2016,6(102):100361-100372. DOI:10.1039/C6RA22724D.
[4]PAN X, WANG H, WANG S, et al. Sonodynamic therapy (SDT): a novel strategy for cancer nanotheranostics[J].Sci China Life Sci, 2018, 61(4):415-426. DOI: 10.1007/s114270179262x.
[5]NESBITT H, SHENG Y, KAMILA S, et al. Gemcitabine loaded microbubbles for targeted chemosonodynamic therapy of pancreatic cancer[J].J Control Release, 2018,279:8-16. DOI: 10.1016/j.jconrel.2018.04.018.
[6]刘韧耕,李黎波.声动力治疗的研究进展[J]. 中国激光医学杂志,2015,24(3):151-157. DOI:10.13480/j.issn10039430.2015.0151.
LIU R G, LI L B. New progress of sonodynamic therapy research[J]. Chin J Laser Med Surg,2015,24(3):151-157.DOI:10.13480/j.issn10039430.2015.0151.
[7]葛鹏磊, 李宁. 高强度聚焦超声治疗肝癌致皮肤烧伤的原因及预防[J]. 临床超声医学杂志, 2007, 9(10):635-636.DOI:10.16245/j.cnki.issn10086978.2007.10.029.
GE P L, LI N.Causes and prevention of skin burns caused by hepatocellular carcinoma treated by high intensity focused ultrasound[J]. J Ultrasound Clin Med, 2007, 9(10): 635-636. DOI:10.16245/j.cnki.issn10086978.2007.10.029.
[8]OLUSANYA T O B, HAJ AHMAD R R, IBEGBU D M, et al. Liposomal drug delivery systems and anticancer drugs[J].Molecules,2018,23(4):E907.DOI:10.3390/molecules23040907.
[9]黄苏苏, 谢波, 凌家俊,等. 二氢卟吩e6磁性声敏纳米脂质体的制备及质量评价[J]. 中国实验方剂学杂志,2017,23(8):21-26. DOI: 10.13422/j.cnki.syfjx.2017080021.
HUANG S S, XIE B, LING J J, et al. Preparation and quality evaluation of magnetic sound sensitive nanoliposomes with porphyrin e6[J]. Chin J Exp Tradit Med Formulae, 2017, 23(8):21-26.DOI:10.13422/j.cnki.syfjx.2017080021.
[10]李奥, 王志刚, 余进洪,等. 液态氟碳纳米粒增强CT成像在兔VX2肝癌模型中的应用[J]. 中国医学影像技术, 2010,26(5):809-811.DOI:10.13929/j.10033289.2010.05.047.
LI A, WANG Z G, YU J H, et al. Lipid perfluorooctylbromide nanoparticlesenhanced CT imaging on rabbit VX2 liver carcinoma models[J].Chin J Med Imaging Technol,2010, 26(5):809-811.DOI:10.13929/j.10033289.2010.05.047.
[11]SHENG D, LIU T, DENG L, et al. Perfluorooctyl bromide & indocyanine green coloaded nanoliposomes for enhanced multimodal imagingguided phototherapy[J]. Biomaterials,2018,165:1-13.DOI:10.1016/j.biomaterials.2018.02.041.
[12]周洋. 相变纳米超声造影剂增效HIFU治疗作用的研究[D].重庆:重庆医科大学, 2012.
ZHOU Y.Application of a phasechange type nanosize ultrasound contrast agent to enhance the efficacy of HIFU ablation[D].Chongqing:Chongqing Medical University,2012.
[13]YAN F, DUAN W, LI Y, et al. NIRlasercontrolled drug release from DOX/IR780loaded temperaturesensitiveliposomes for chemophotothermal synergistic tumor therapy[J]. Theranostics,2016,6(13):2337-2351.DOI:10.7150/thno.14937.
[14]SHI J, SU Y, LIU W, et al. A nanoliposomebased photoactivable drug delivery system for enhanced cancer therapy and overcoming treatment resistance[J]. Int J Nanomedicine, 2017, 12:8257-8275. DOI:10.2147/IJN.S143776.
[15]陈佳丽. 白藜芦醇苷对人肝癌细胞HepG2细胞株凋亡的促进作用的实验研究[D].广州:南方医科大学,2017.
CHEN J L.The study of effect of Polydatin on apoptosis of human hepatocellular carcinoma cell line[D].Guangzhou:Southern Medical University,2017.
[16]唐琴. 携氧载吲哚菁绿纳米粒协同光声动力对类风湿关节炎滑膜成纤维细胞的毒性作用研究[D]. 重庆:重庆医科大学, 2017.
TANG Q.Oxygen and indocyanine green loaded phasetransition nanoparticlemediated photosonodynamic cytotoxic effects on rheumatoid arthritis fibroblastlike synoviocytes [D].Chongqing:Chongqing Medical University,2017.
[17]FENG Q, LI Y, YANG X, et al. Hypoxiaspecific therapeutic agents delivery nanotheranostics: A sequential strategy for ultrasound mediated ondemand tritherapies and imaging of cancer[J]. J Controlled Release, 2018, 275: 192-200.DOI:10.1016/j.jconrel.2018.02.011.
[18]REN H, LIU J, SU F, et al. Relighting photosensitizers by synergistic integration of albumin and perfluorocarbon for enhanced photodynamic therapy[J]. ACS Appl Mater Interfaces, 2017, 9(4):3463-3473. DOI: 10.1021/acsami.6b14885.
[19]MILLER D L, AVERKIOU M A, BRAYMAN A A, et al. Bioeffects considerations for diagnostic ultrasound contrast agents[J]. J Ultrasound Med, 2008, 27(4):611-632.DOI:10.7863/jum.2008.27.4.611.
[20]DEEPAGAN V G, YOU D G, UM W, et al. Longcirculating AuTiO2 nanocomposite as a sonosensitizer for ROSmediated eradication of cancer[J]. Nano Lett, 2016,16(10):6257-6264.DOI:10.1021/acs.nanolett.6b02547.
[21]QIAO Y, WAN J, ZHOU L, et al. Stimuliresponsive nanotherapeutics for precision drug delivery and cancer therapy[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2018:e1527.DOI: 10.1002/wnan.1527.

更新日期/Last Update: 2018-12-19