[1]韦莉,吴俊,赵蕾,等.CD36对炎症因子TNF-α和IL-6诱发HepG2细胞胞内脂质聚集的影响[J].第三军医大学学报,2018,40(20):1833-1838.
 WEI Li,WU Jun,ZHAO Lei,et al.CD36 knockdown alleviates lipid accumulation induced by tumor necrosis factor-α and interleukin-6 in HepG2 cells[J].J Third Mil Med Univ,2018,40(20):1833-1838.
点击复制

CD36对炎症因子TNF-α和IL-6诱发HepG2细胞胞内脂质聚集的影响(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第20期
页码:
1833-1838
栏目:
基础医学
出版日期:
2018-10-30

文章信息/Info

Title:
CD36 knockdown alleviates lipid accumulation induced by tumor necrosis factor-α and interleukin-6 in HepG2 cells
作者:
韦莉吴俊赵蕾陈压西杨萍
重庆医科大学脂糖代谢性疾病重庆市重点实验室,脂质研究中心
Author(s):
WEI Li WU Jun ZHAO Lei CHEN Yaxi YANG Ping

Center for Lipid Research, Key Laboratory of Metabolism on Lipid and Glucose, Chongqing Medical University, Chongqing, 400016, China

关键词:
HepG2细胞炎症CD36脂质积聚
Keywords:
HepG2 cells inflammatory cytokines CD36 lipid accumulation
分类号:
R322.47;R392.3;R589.2
文献标志码:
A
摘要:

目的    探讨炎症因子是否通过上调脂肪酸转运导致HepG2细胞脂质积聚及脂毒性。方法       分别给予HepG2细胞肿瘤坏死因子(tumor necrosis factor-α, TNF-α组: 0.04 mmol/L软脂酸+25 ng/mL TNF-α)和白介素-6(interleukin-6,IL-6组: 0.04 mmol/L软脂酸+20 ng/mL IL-6)刺激处理24 h,酶法检测HepG2细胞内的甘油三酯(triglycercide,TG)水平,ELISA检测细胞内游离脂肪酸(free fatty acid,FFA)含量。利用荧光标记的软脂酸,动态监测细胞对外源性脂肪酸的摄取速率。然后利用小RNA干扰技术,构建低表达脂肪酸转运酶(cluster of differentiation, CD36)的HepG2细胞(CD36 KD HepG2)和对照细胞(NC HepG2)模型,检测CD36低表达时细胞对脂肪酸的摄取速率变化,并检测细胞内活性氧(reactive oxygen species, ROS)及过氧化氢(hydrogen peroxide,H2O2)的含量。结果    炎症因子能够刺激HepG2细胞TG及FFA的累积,其中TNF-α处理组及IL-6处理组的FFA含量及TG含量都明显增加(P<0.05),并且能够引起HepG2细胞对脂肪酸的摄取增加(P<0.05)。抑制HepG2细胞中CD36表达,可以减轻胞内脂质积聚(P<0.05),削弱炎症状态下HepG2细胞对脂肪酸的摄取(P<0.05),并且能够显著降低细胞内ROS及H2O2含量(P<0.05)。结论    在肝脏细胞中,抑制CD36的表达能够减少炎症因子TNF-α和IL-6引起的脂肪酸摄取增加,减轻脂质积聚,改善细胞脂毒性;提示CD36可作为脂肪肝等代谢性疾病的潜在治疗靶点。

Abstract:

ObjectiveTo investigate whether inflammatory cytokines participate in lipid accumulation and lipid toxicity by upregulating fatty acid transport in HepG2 cells. MethodsHepG2 cells were treated with 25 ng/mL tumor necrosis factor-α (TNF-α) or 20 ng/mL interleukin-6 (IL-6) in the presence of 0.04 mmol/L palmitate for 24 h, followed by enzymatic detection of triglycerides (TG) levels and ELISA to detect intracellular free fatty acid contents. The uptake rate of exogenous fatty acids was monitored using fluorescence-labeled palmitic acid. Small RNA interference technique was used to inhibit the expression of CD36 in HepG2 cells, and the changes in the uptake rate of fatty acids, intracellular reactive oxygen species (ROS), and hydrogen peroxide (H2O2) were detected in the cells in response to TNF-α or IL-6 stimulation. ResultsThe inflammatory cytokines TNF-α and IL-6 stimulated the accumulation of TG and FFA and aggravated intracellular lipid accumulation in HepG2 cells. Treatments of the cells with TNF-α and IL-6 both significantly increased the intracellular FFA and TG contents (P<0.05) and the uptake rate of fatty acids (P<0.05). CD36 knockdown significantly reduced intracellular lipid accumulation (P<0.05), intake rate of fatty acids (P<0.05), and intracellular ROS and H2O2 levels in HepG2 cells with TNF-α or IL-6 stimulation (P<0.05). ConclusionCD36 knockdown can reduce the uptake of fatty acids and lipid accumulation and alleviate lipotoxicity induced by inflammatory cytokines in HepG2 cells, suggesting the potential of CD36 as a therapeutic target for metabolic diseases such as fatty liver.

参考文献/References:

[1]KHOONSARI M, MOHAMMAD HOSSEINI AZAR M, GHAVAM R, et al. Clinical manifestations and diagnosis of nonalcoholic fatty liver disease[J]. Iran J Pathol, 2017, 12(2): 99-105.
[2]DAY C P. Pathogenesis of steatohepatitis[J]. Best Pract Res Clin Gastroenterol, 2002, 16(5): 663-678. DOI: 10.1053/bega.2002.0333.
[3]SAXTON R A, SABATINI D M. mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017, 169(2): 361-371. DOI: 10.1016/j.cell.2017.03.035.
[4]PEPINO M Y, KUDA O, SAMOVSKI D, et al. Structurefunction of CD36 and importance of fatty acid signal transduction in fat metabolism[J]. Annu Rev Nutr, 2014, 34: 281-303. DOI: 10.1146/annurevnutr071812161220.
[5]LIU W, YIN Y, ZHOU Z, et al. OxLDLinduced IL1 beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation[J]. Inflamm Res, 2014, 63(1): 33-43. DOI: 10.1007/s0001101306673.
[6]GOTODA T, IIZUKA Y, YAMADA N. Complex connection between CD36 and atherosclerosis, lipid metabolism, and insulin resistance syndromes[J]. Curr Atheroscler Rep, 2000, 2(6): 453-454. DOI: 10.1007/s118830000042z.
[7]STEWART C R, STUART L M, WILKINSON K, et al. CD36 ligands promote sterile inflammation through assembly of a Tolllike receptor 4 and 6 heterodimer[J]. Nat Immunol, 2010, 11(2): 155-161. DOI: 10.1038/ni.1836.
[8]GHARIB M, TAO H, FUNGWE T V, et al. Cluster differentiating 36 (CD36) deficiency attenuates obesityassociated oxidative stress in the heart[J]. PLoS ONE, 2016, 11(5): e0155611. DOI: 10.1371/journal.pone.0155611.
[9]MA K L, RUAN X Z, POWIS S H, et al. Inflammatory stress exacerbates lipid accumulation in hepatic cells and fatty livers of apolipoprotein E knockout mice[J]. Hepatology,2008, 48(3): 770-781. DOI: 10.1002/hep.22423.
[10]WANG C, HU L, ZHAO L, et al. Inflammatory stress increases hepatic CD36 translational efficiency via activation of the mTOR signalling pathway[J]. PLoS ONE, 2014, 9(7): e103071. DOI: 10.1371/journal.pone.0103071.
[11]YANG P, XIAO Y, LUO X, et al. Inflammatory stress promotes the development of obesityrelated chronic kidney disease via CD36 in mice[J]. J Lipid Res, 2017, 58(7): 1417-1427. DOI: 10.1194/jlr.M076216.
[12]ZHONG S, ZHAO L, LI Q, et al. Inflammatory stress exacerbated mesangial foam cell formation and renal injury via disrupting cellular cholesterol homeostasis[J]. Inflammation, 2015, 38(3): 959-971. DOI: 10.1007/s1075301400580.
[13]ZHAO L, ZHONG S, QU H, et al. Chronic inflammation aggravates metabolic disorders of hepatic fatty acids in highfat dietinduced obese mice[J]. Sci Rep, 2015, 5: 10222. DOI: 10.1038/srep10222.
[14]BIEGHS V, VAN GORP P J, WALENBERGH S M, et al. Specific immunization strategies against oxidized lowdensity lipoprotein: a novel way to reduce nonalcoholic steatohepatitis in mice[J]. Hepatology, 2012, 56(3): 894-903. DOI: 10.1002/hep.25660.
[15]ZHOU F, PAN Y, HUANG Z, et al. Visfatin induces cholesterol accumulation in macrophages through upregulation of scavenger receptorA and CD36[J]. Cell Stress Chaperones, 2013, 18(5): 643-652. DOI: 10.1007/s121920130417z.
[16]KOONEN D P, JACOBS R L, FEBBRAIO M, et al. Increased hepatic CD36 expression contributes to dyslipidemia associated with dietinduced obesity[J]. Diabetes,2007,56(12): 2863-2871. DOI: 10.2337/db070907.
[17]INOUE M, OHTAKE T, MOTOMURA W, et al. Increased expression of PPARgamma in high fat dietinduced liver steatosis in mice[J]. Biochem Biophys Res Commun, 2005, 336(1): 215-222. DOI: 10.1016/j.bbrc.2005.08.070.
[18]GARCAMONZN C, LO IACONO O, CRESPO J, et al. Increased soluble CD36 is linked to advanced steatosis in nonalcoholic fatty liver disease[J]. Eur J Clin Invest, 2014, 44(1): 65-73. DOI: 10.1111/eci.12192.
[19]HUA W, HUANG H Z, TAN L T, et al. CD36 mediated fatty acidinduced podocyte apoptosis via oxidative stress[J]. PLoS ONE, 2015, 10(5): e0127507. DOI: 10.1371/journal.pone.0127507.
[20]SMITH B K, JAIN S S, RIMBAUD S, et al. FAT/CD36 is located on the outer mitochondrial membrane, upstream of longchain acylCoA synthetase, and regulates palmitate oxidation[J]. Biochem J, 2011, 437(1): 125-134. DOI: 10.1042/BJ20101861.

相似文献/References:

[1]王柯静,程渝,周远大.野马追提取液对动脉粥样硬化家兔炎症反应的防治作用[J].第三军医大学学报,2012,34(18):1853.
 Wang Kejing,Cheng Yu,Zhou Yuanda.Lindley eupatorium herb extract prevents and attenuates vascular inflammation reaction in atherosclerosis rabbits[J].J Third Mil Med Univ,2012,34(20):1853.
[2]郝丽云,李晓辉.孕期母体炎症刺激对子代大鼠血压及学习记忆能力的影响[J].第三军医大学学报,2008,30(10):897.
 HAO Li-yun,LI Xiao-hui.Alternation of blood pressure and behavioral performance in rat offspring following maternal inflammation during pregnancy[J].J Third Mil Med Univ,2008,30(20):897.
[3]崔松,何国祥,程训民,等.轻中度狭窄病变血管内超声影像学特征与超敏C反应蛋白的关系研究[J].第三军医大学学报,2007,29(02):167.
 CUI Song,HE Guo-xiang,CHENG Xun-min,et al.Correlation between intravascular ultrasound features of atherosclerotic plaques and high-sensitivity C-reactive protein[J].J Third Mil Med Univ,2007,29(20):167.
[4]柳曦,周乃康,张锦明,等.18F-FLT在小鼠肺癌和炎症模型中的生物分布及PET显像研究[J].第三军医大学学报,2007,29(09):798.
 LIU Xi,ZHOU Nai-kang,ZHANG Jin-ming,et al.Experimental study on biodistribution and PET imaging of 3’-deoxy-3’-18F-fluorothymidine in murine models of lung carcinoma and inflammation[J].J Third Mil Med Univ,2007,29(20):798.
[5]李文刚,方强,李为兵,等.急性尿潴留大鼠膀胱功能损害与组织结构改变的关系[J].第三军医大学学报,2006,28(08):823.
[6]冉鸿,陈康宁,黄河清,等.舒降之降低颈动脉狭窄大鼠P300及血清IL-6,CRP水平的实验研究[J].第三军医大学学报,2006,28(08):826.
[7]贾乙,李晓辉.炎症因素在泡沫细胞形成中的作用及三七皂苷对其影响[J].第三军医大学学报,2005,27(10):972.
[8]彭艳,覃数,刘剑.血脂康对心力衰竭患者炎症因子和血管内皮功能的影响[J].第三军医大学学报,2009,31(07):636.
[9]刘宏,柳青,雷寒,等.炎症促进清道夫受体基因敲除小鼠主动脉脂质积聚的分子机制[J].第三军医大学学报,2010,32(16):1728.
 Liu Hong,Liu Qing,Lei Han,et al.Inflammatory stress promotes lipid accumulation in aorta of scavenger double knockout mice[J].J Third Mil Med Univ,2010,32(20):1728.
[10]李胜君,李梦文,张燕,等.反式激活蛋白-NEMO结合域抑制胆红素诱导的大鼠皮层星形胶质细胞NF-κB活化[J].第三军医大学学报,2015,37(21):2131.
 Li Shengjun,Li Mengwen,Zhang Yan,et al.TAT-NBD exerts anti-inflammatory effect in rat cortical astrocytes by inhibiting bilirubin-induced nuclear factor-κB activation[J].J Third Mil Med Univ,2015,37(20):2131.

更新日期/Last Update: 2018-10-31