[1]黄金柱,孙建彬,李园园,等.桧木醇/纳米氧化锌/聚己内酯/聚乙二醇纳米纤维促进耐甲氧西林金黄色葡萄球菌伤口感染的愈合[J].第三军医大学学报,2018,40(20):1898-1905.
 HUANG Jinzhu,SUN Jianbin,LI Yuanyuan,et al.Beta-thujaplicin/ZnO nanoparticles/polycaprolactone/poly(ethylene glycol) nanofibers promotes healing of wounds with methicillin-resistant Staphylococcus aureus infection[J].J Third Mil Med Univ,2018,40(20):1898-1905.
点击复制

桧木醇/纳米氧化锌/聚己内酯/聚乙二醇纳米纤维促进耐甲氧西林金黄色葡萄球菌伤口感染的愈合(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第20期
页码:
1898-1905
栏目:
生物医学工程
出版日期:
2018-10-30

文章信息/Info

Title:
Beta-thujaplicin/ZnO nanoparticles/polycaprolactone/poly(ethylene glycol) nanofibers promotes healing of wounds with methicillin-resistant Staphylococcus aureus infection
作者:
黄金柱孙建彬李园园周敏盛芳芳卢来春
陆军军医大学(第三军医大学)第三附属医院(野战外科研究所)药剂科;陆军军医大学(第三军医大学)药学与检验医学系药学综合实验中心;重庆大学生物工程学院生物医药与健康工程实验室
 
Author(s):
HUANG Jinzhu SUN Jianbin LI Yuanyuan ZHOU Min SHENG Fangfang LU Laichun

Department of Pharmacy, Institute of Surgery Research, Third Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042; Comprehensive Experimental Center, Faculty of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038; Biomedical and Health Engineering Laboratory, College of Biological Engineering, Chongqing University, Chongqing, 400044, China

关键词:
桧木醇纳米氧化锌纳米纤维耐甲氧西林金黄色葡萄球菌伤口感染
Keywords:
beta-thujaplicin zinc oxide nanoparticles nanofibers methicillin-resistant Staphylococcus aureus wound infection
分类号:
R318.08; R378.11; R632.05
文献标志码:
A
摘要:

目的    制备桧木醇/纳米氧化锌/聚己内酯/聚乙二醇(beta-thujaplicin/zinc oxide nanoparticles/polycaprolactone/polyethylene glycol, β-T/ZnONPs/PCL/PEG)纳米纤维,并评价其对小鼠伤口感染耐甲氧西林金黄色葡萄球菌(methicillinresistant staphylococcus aureus,MRSA)的治疗作用。方法    通过静电纺丝技术制备纳米纤维后,用扫描电镜观察纳米纤维结构,采用傅里叶变换红外光谱仪考察纳米纤维和药物之间的结构和化学键,差示扫描量热仪测定纳米纤维的热力学性质;并采用稀释法测定纳米纤维的体外抗菌活性,MTT实验检测细胞毒性,选择BALB/c小鼠建立MRSA感染的伤口模型,考察纳米纤维的治疗作用。结果    1% β-T/0.25% ZnONPs/PCL/PEG纳米纤维的直径为(255.98±56.08)nm,药物与载体材料之间的相容性较好。0.5% β-T/0.5%ZnONPs/PCL/PEG与1%β-T/0.25%ZnONPs/PCL/PEG两种组分的纳米纤维对MRSA抗菌活性(P>0.05)和细胞毒性(P>0.05)相似,符合GB/T 16886.5-2011对生物材料的相关标准。动物实验结果显示,在建立伤口给予纳米纤维治疗的第7、11、15天,所有载药组对MRSA引起的伤口感染与裸露组、未载药纳米纤维组相比,具有较好的治疗作用(P<0.05),在第11天,β-T/ZnONPs/PCL/PEG纳米纤维组伤口愈合率优于其他各组(P<0.05)。通过病理学观察发现,制备的β-T/ZnONPs/PCL/PEG纳米纤维在促进感染性伤口愈合方面效果明显优于其他各组。结论    桧木醇/纳米氧化锌/聚己内酯/聚乙二醇纳米纤维型创伤敷料符合目前对于理想型创伤敷料的要求,该新型敷料将来应用于临床治疗耐甲氧西林金黄色葡萄球菌引起的伤口感染,可以减轻伤口部位的炎症反应,具备一定的开发前景。

Abstract:

ObjectiveTo prepare composite nanofibers fabricated using betathujaplicin, zinc oxide nanoparticles, polycaprolactone, and polyethylene glycol (β-T/ZnONPs/PCL/PEG) and evaluate its effect in promoting healing of wounds infected by methicillin-resistant Staphylococcus aureus (MRSA). MethodsThe composite nanofibers with different formulations were fabricated using electrospinning technique and its structures were observed with scanning electron microscopy. The structure and the chemical bonds of the nanofibers were characterized by Fourier transform infrared spectrometry, and its thermodynamic property was characterized by differential scanning calorimetry. Dilution method was used to evaluate the antibacterial activity, and MTT assay was used to assess the cytotoxicity of the nanofibers. The effect of the nanofibers in promoting wound healing was evaluated in a BALB/c rat model of wound infection by MRSA. ResultsWith diameter of (255.98±56.08) nm, 1%β-T/0.25%ZnONPs/PCL/PEG nanofibers showed a good compatibility between the drug and the carrier material. 0.5%β-T/0.5%ZnONPs/PCL/PEG and 1%β-T/0.25%ZnONPs/PCL/PEG nanofibers had similar antibacterial (P>0.05) and biocompatibility profiles (P>0.05), and both met the GB/T 16886.5-2011 standards. Animal studies showed that all the drug-loaded nanofibers obviously promoted healing of the wounds infected by MRSA on days 7, 11 and 15 following model establishment (P<0.05), and dressing with β-T/ZnONPs/PCL/PEG nanofibers achieved a significantly higher wound healing rate than with the other materials on day 11 (P<0.05). HE staining also showed that βT/ZnONPs/PCL/PEG nanofibers significantly accelerated wound healing as compared with the other materials. Conclusion   β-T/ZnONPs/PCL/PEG nanofibers prepared using electrospinning technique meet the requirements for an ideal wound dressing material and can be a promising material for clinical treatment of wound with MRSA infection.

参考文献/References:

[1]JAYAKUMAR R, PRABAHARAN M, SUDHEESH KUMAR P T, et al. Biomaterials based on chitin and chitosan in wound dressing applications[J]. Biotechnol Adv, 2011, 29(3): 322-337. DOI: 10.1016/j.biotechadv.2011.01.005.
[2]MADHUMATHI K, SUDHEESH KUMAR P T, ABHILASH S, et al. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications[J]. J Mater Sci Mater Med, 2010, 21(2): 807-813. DOI: 10.1007/s10856 0093877z.
[3]KHOSRAVI A D, HOVEIZAVI H, MOHAMMADIAN A, et al. Genotyping of multidrugresistant strains of pseudomonas aeruginosa isolated from burn and wound infections by ERICPCR[J]. Acta Cir Bras, 2016, 31(3): 206-211. DOI: 10.1590/S0102865020160030000009.
[4]DWORNICZEK E, PIWOWARCZYK J, BANIA J, et al. Enterococcus in wound infections: virulence and antimicrobial resistance[J]. Acta Microbiol Immunol Hung, 2012, 59(2): 263-269. DOI: 10.1556/AMicr.59.2012.2.11.
[5]AKINKUNMI E O, ADESUNKANMI A R, LAMIKANRA A. Pattern of pathogens from surgical wound infections in a nigerian hospital and their antimicrobial susceptibility profiles[J]. Afr Health Sci, 2014, 14(4): 802-809. DOI: 10.4314/ahs.v14i4.5.
[6]黄金柱, 胡敏, 孙建彬,等. β桧木醇/纳米氧化锌/聚己内酯纳米纤维的体外抑菌效果及生物相容性评价[J]. 第三军医大学学报, 2017, 39(21): 2084-2092. DOI: 10.16016/j. 10005404.201707052.
HUANG J Z, HU M, SUN J B, et al. In vitro antibacterial effect and biocompatibility of nanofibers composed of betahinokitiol, zinc oxide nanoparticles and polycaprolactone[J]. J Third Mil Med Univ,2017,39(21): 2084-2092. DOI: 10.16016/j.10005404.201707052.
[7]郝和平. 医疗器械生物学评价标准实施指南[M]. 北京: 中国标准出版社, 2000: 81-110.
HAO H P. Guidelines for the implementation of biological evaluation standards for medical devices[M]. Beijing: Standards Press of China, 2000: 81-110.
[8]BAE Y H, PARK K. Targeted drug delivery to tumors: myths, reality and possibility[J]. J Control Release, 2011, 153(3): 198-205. DOI: 10.1016/j.jconrel.2011.06.001.
[9]CONNERKERR T. The topical evolution: free ions, orthomolecular agents, phytochemicals, and insectproduced substances[J]. Adv Wound Care(New Rochelle), 2014, 3(8): 530-536. DOI: 10.1089/wound.2014.0563.
[10]AGREN M S. Studies on zinc in wound healing[J]. Acta Derm Venereol Suppl(Stockh), 1990, 154: 1-36.
[11]RAGUVARAN R, MANUJA B K, CHOPRA M, et al. Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells[J]. Int J Biol Macromol,2017,96: 185-191. DOI: 10.1016/ j.ijbiomac.2016.12.009.
[12]KUMAR P T, LAKSHMANAN V K, ANILKUMAR T V, et al. Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation[J]. ACS Appl Mater Interfaces, 2012, 4(5): 2618-2629. DOI: 10.1021/am300292v.
[13]FOTOPOULOU T, C'IRIC' A, KRITSI E, et al. Antimicrobial/antibiofilm activity and cytotoxic studies of βthujaplicin derivatives[J]. Arch Pharm(Weinheim), 2016, 349(9): 698-709. DOI: 10.1002/ardp.201600095.
[14]HUANG M H, Shen Y F, Hsu T T, et al. Physical characteristics, antimicrobial and odontogenesis potentials of calcium silicate cement containing hinokitiol[J]. Mater Sci Eng C Mater Biol Appl, 2016, 65: 1-8. DOI: 10.1016/j.msec.2016.04.016.

相似文献/References:

[1]黄金柱,胡敏,孙建彬,等.β-桧木醇/纳米氧化锌/聚己内酯纳米纤维的体外抑菌效果及生物相容性评价[J].第三军医大学学报,2017,39(21):2084.
 HUANG Jinzhu,HU Min,SUN Jianbin,et al.In vitro antibacterial effect and biocompatibility of nanofibers composed of beta-hinokitiol, zinc oxide nanoparticles and polycaprolactone[J].J Third Mil Med Univ,2017,39(20):2084.
[2]罗争辉,林海,尹美芳,等.新型纳米氧化锌/细菌纤维素复合膜的制备与性能评价[J].第三军医大学学报,2017,39(23):2250.
 LUO Zhenghui,LIN Hai,YIN Meifang,et al.Preparation and properties of a novel zinc oxide nanoparticles/bacterial cellulose composites[J].J Third Mil Med Univ,2017,39(20):2250.

更新日期/Last Update: 2018-11-01