[1]张静娜,王莉,张晔,等.基于功能近红外光谱技术的镜像运动脑激活特征的初步研究[J].第三军医大学学报,2018,40(18):1682-1687.
 ZHANG Jingna,WANG Li,ZHANG Ye,et al.Brain activation characteristics during mirror movements in healthy subjects: findings by functional nearinfrared spectroscopy[J].J Third Mil Med Univ,2018,40(18):1682-1687.
点击复制

基于功能近红外光谱技术的镜像运动脑激活特征的初步研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第18期
页码:
1682-1687
栏目:
临床医学
出版日期:
2018-09-30

文章信息/Info

Title:
Brain activation characteristics during mirror movements in healthy subjects: findings by functional nearinfrared spectroscopy
作者:
张静娜王莉张晔杨昆桑林琼李鹏岳邱明国
陆军军医大学(第三军医大学)生物医学工程系医学图像学教研室
Author(s):
ZHANG Jingna WANG Li ZHANG Ye YANG Kun SANG Linqiong LI Pengyue QIU Minguo

Department of Medical Imaging, Faculty of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing, 400038, China

关键词:
功能近红外光谱技术镜像运动脑激活模式神经机制
Keywords:
functional near-infrared spectroscopy mirror movements brain activation patterns   neural mechanism  
分类号:
R338.2;R446.9;R455
文献标志码:
A
摘要:

目的     研究在镜像运动任务时大脑功能激活特征,为镜像运动疗法治疗截肢后幻肢痛提供脑功能影像学依据。方法    招募13名健康被试,被试者均为本校的在校师生,采用功能性近红外光谱技术检测被试在左足运动执行和右足镜像运动时其大脑感觉运动皮层激活情况,以及大脑皮层含氧血红蛋白(HbO2)相对浓度变化时程特点。结果      右足镜像运动与左足运动执行时,均显著激活双侧大脑主运动区和初级感觉皮层,其中激活最强的脑区在大脑右侧的初级感觉运动皮层(P<0.05)。镜像任务HbO2相对浓度时间变化曲线出现下降趋势的时间早于运动执行,但两种任务HbO2浓度变化均值差异无统计学意义(P>0.05)。结论     功能近红外光谱技术研究结果证实了镜像运动和运动执行具有相似大脑激活模式和激活强度

Abstract:

Objective      To study the brain activation characteristics during mirror movements and provide functional near-infrared spectroscopy (fNIRS) evidence to support mirror therapy for phantom limb pain after amputation. Methods       Thirteen healthy subjects (including 10 male and 3 female subjects, aged 22~34 years) were recruited in this study. fNIRS was used to measure brain activation and the changes in the relative concentration of oxygenated hemoglobin (HbO2) in the sensorimotor cortex during the execution of movements of the left foot and mirror movements of the right foot. Results      Both of the two tasks activated the bilateral primary motor cortex and the primary sensory cortex, and the right primary sensorimotor cortex showed the strongest activation (P<0.05). The mean HbO2 concentration during the execution of the two tasks showed no significant difference, but a downward trend occurred in the time course of HbO2 concentration changes in the mirror movements before the execution of movements (P>0.05). Conclusion      Our findings confirm that the brain activation patterns and intensity are similar during the execution of movements of the left foot and mirror movements of the right foot, which supports mirror therapy for treatment of phantom limb pain after amputation

参考文献/References:

[1]FLOR H, DIERS M, ANDOH J. The neural basis of phantom limb pain[J]. Trends Cogn Sci (Regul Ed), 2013, 17(7): 307-308. DOI:10.1016/j.tics.2013.04.007.
[2]HANLEY M A, EHDE D M, JENSEN M, et al. Chronic pain associated with upperlimb loss[J]. Am J Phys Med Rehabil, 2009, 88(9): 742-751.DOI: 10.1097/PHM.0b013 e3181b306ec.
[3]FOELL J, BEKRATERBODMANN R, FLOR H, et al. Phantom limb pain after lower limb trauma: origins and treatments[J]. Int J Low Extrem Wounds, 2011, 10(4): 224-235. DOI: 10.1177/1534734611428730.
[4]FOELL J, BEKRATERBODMANN R, DIERS M, et al. Mirror therapy for phantom limb pain: brain changes and the role of body representation[J]. Eur J Pain, 2014, 18(5): 729-739. DOI: 10.1002/j.15322149.2013.00433.x.
[5]RAMADUGU S, NAGABUSHNAM SC, KATUWAL N, et al. Intervention for phantom limb pain: a randomized single crossover study of mirror therapy[J]. Indian J Psychiatry, 2017, 59(4): 457-464. DOI: 10.4103/psychiatry.IndianJPsychi atry_259_16.
[6]WITTKOPF P G, JOHNSON M I. Mirror therapy: a potential intervention for pain management[J]. Rev Assoc Med Bras (1992), 2017, 63(11): 1000-1005. DOI: 10.1590/18069282.63.11.1000.
[7]白学军, 张琪涵, 章鹏, 等. 基于fNIRS的运动执行与运动想象脑激活模式比较[J]. 心理学报, 2016, 48(5): 495-508. DOI: 10.3724/SP.J.1041.2016.00495508.
BAI X J, ZHANG Q H, ZHANG P, et al. Comparison of motor execution and motor imagery brain activation patterns: A fNIRS study[J]. Acta Psychologica Sinica, 2016, 48(5): 495-508. DOI: 10.3724/SP.J.1041.2016.00495508.
[8]HALL C R, MARTIN K A. Measuring movement imagery abilities: a revision of the movement imagery questionnaire [J]. Journal of Mental Imagery, 1997, 21: 143-154.
[9]CUTINI S, SCATTURIN P, ZORZI M. A new method based on ICBM152 head surface for probe placement in multichannel fNIRS[J]. Neuroimage, 2011, 54(2): 919-927. DOI: 10.1016/j.neuroimage.2010.09.030.
[10]LUU S, CHAU T. Decoding subjective preference from singletrial nearinfrared spectroscopy signals[J]. J Neural Eng, 2009, 6(1): 016003. DOI: 10.1088/17412560/6/1/016003.
[11]HOSHI Y, KOBAYASHI N, TAMURA M. Interpretation of nearinfrared spectroscopy signals: a study with a newly developed perfused rat brain model[J]. J Appl Physiol, 2001, 90(5): 1657-1662. DOI: 10.1152/jappl.2001.90.5.1657.
[12]ICHIKAWA H, NAKATO E, KANAZAWA S, et al. Hemodynamic response of children with attentiondeficit and hyperactive disorder (ADHD) to emotional facial expressions[J]. Neuropsychologia, 2014, 63: 51-58. DOI: 10.1016/j.neuropsychologia.2014.08.010.
[13]RAMACHANDRAN V S, ROGERSRAMACHANDRAN D, COBB S. Touching the phantom limb[J]. Nature, 1995, 377(6549): 489-490. DOI: 10.1038/377489a0.
[14]DIERS M, KAMPING S, KIRSCH P, et al. Illusionrelated brain activations: a new virtual reality mirror box system for use during functional magnetic resonance imaging[J]. Brain Res, 2015, 1594: 173-182. DOI: 10.1016/j.brainres. 2014.11.001.
[15]MILDE C, RANCE M, KIRSCH P, et al. Do mirror glasses have the same effect on brain activity as a mirror box? Evidence from a functional magnetic resonance imaging study with healthy subjects[J]. PLoS ONE, 2015, 10(5): e0127694. DOI: 10.1371/journal.pone.0127694.
[16]LOTZE M, FLOR H, GRODD W, et al. Phantom movements and pain. An fMRI study in upper limb amputees[J]. Brain, 2001, 124(Pt 11): 2268-2277.
[17]DIERS M, CHRISTMANN C, KOEPPE C, et al. Mirrored, imagined and executed movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain[J]. Pain, 2010, 149(2): 296-304. DOI: 10.1016/j.pain.2010.02.020.
[18]TAK S, YE J C. Statistical analysis of fNIRS data: a comprehensive review[J]. Neuroimage, 2014, 85 Pt 1: 72-91. DOI: 10.1016/j.neuroimage.2013.06.016.
[19]杜凯, 王莉, 冯正权, 等. 应用fNIRS技术对运动执行与运动想象脑激活模式的研究[J]. 第三军医大学学报, 2015, 20(37): 2017-2021. DOI: 10.16016/j.10005404. 201503179.
DU K, WANG L, FENG Z Q, et al. Brain activation modes during motor execution and motor imagery in healthy individuals by functional near infrared reflectance spectroscopy[J]. J Third Mil Med Univ, 2015, 37(20): 2017-2021. DOI: 10.3724/SP.J.1041.2016.00495508.
[20]白学军, 周菘, 刘颖, 等. 中文音素言语流畅性任务的近红外脑功能成像研究[J]. 心理科学, 2016, 39(3):520-526. DOI:10.16719/j.cnki.16716981.20160302.
BAI X J, ZHOU S, LIU Y, et al. Languagespecific cortical activation patterns for phoneme verbal fluency task in Chinese assessed by functional nearinfrared spectroscopy[J]. Psychol Sci, 2016, 39(3):520-526. DOI: 10. 16719/j.cnki.1671 6981.20160302.

更新日期/Last Update: 2018-09-29