[1]刘益兵,黄楠楠,张珠玙,等.下颌第一磨牙在不同咬合接触受力下的有限元分析[J].第三军医大学学报,2018,40(20):1906-1910.
 LIU Yibing,HUANG Nannan,ZHANG Zhuyu,et al.Finite element analysis of mandibular first molar under different conditions of occlusal contact[J].J Third Mil Med Univ,2018,40(20):1906-1910.
点击复制

下颌第一磨牙在不同咬合接触受力下的有限元分析(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第20期
页码:
1906-1910
栏目:
生物医学工程
出版日期:
2018-10-30

文章信息/Info

Title:
Finite element analysis of mandibular first molar under different conditions of occlusal contact
作者:
刘益兵黄楠楠张珠玙胡娜
重庆医科大学附属口腔医院,口腔疾病与生物医学重庆市重点实验室,重庆市高校市级口腔生物医学工程重点实验室
Author(s):
LIU Yibing HUANG Nannan ZHANG Zhuyu HU Na

Chongqing Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China

关键词:
下颌第一磨牙中性磨牙关系有限元分析咬合接触
Keywords:
mandibular first molar molar relationship finite element analysis occlusal contact  
分类号:
R318.01;R319;R78
文献标志码:
A
摘要:

目的   通过有限元法,建立Ⅰ类磨牙关系不同的咬合接触类型的下颌第一磨牙,分析咬合接触类型对牙体、牙周组织受力及牙位移的影响。方法   选取下颌第一磨牙为中性磨牙关系的患者,通过CBCT扫描,获得DICOM数据,建立有限元模型,分别构造出不同咬合接触类型的各个工况,通过垂直加载300N载荷作用力,获取在不同工况下下颌第一磨牙牙体应力、应变及位移极值,分析不同咬合接触类型对牙体及牙周组织的影响。结果    仅有C区(下颌第一磨牙舌尖颊斜面)受力时应力峰值最大,仅有A、B区(A区:下颌第一磨牙颊尖颊斜面;B区:下颌第一磨牙颊尖舌斜面)受力时次之,应力峰值大小随着受力区的增多呈减小趋势。应力集中的部位除1、4工况外,其余大多集中在牙体牙合面的中央窝侧壁。牙体受到应力位置不同,牙体位移也不同,其中,仅C区接触时牙体移动值达最高,仅A区接触时其次,后依次为BC、AB、B区接触,而牙体移动值最小的是AC和ABC区接触。结论    仅有C或A区接触时对牙齿稳定性不利,应尽量避免,在咬合调整时,多点接触式咬合可有利分散咬合应力。

Abstract:

ObjectiveTo establish a finite element model of the mandibular first molar and analyze the effects of different conditions of occlusal contact on stress distribution in the tooth and periodontal tissue and on tooth displacement. MethodsThe DICOM data of conebeam computed tomography (CBCT) were obtained from a patient with neutral occlusion of the mandibular first molar to establish the finite element model of the mandibular first molar and the periodontal tissue. Three occlusal contact areas were defined on the occlusal surface of the first molar, namely the buccal slope at the buccal cusp (A), lingual slope at the buccal cusp (B), and buccal slope at the lingual cusp (C). The extreme values of stress, strain and displacement of the mandibular first molar were determined under a vertical loading of 300 N, and the impact of different conditions of occlusal contact on the dental and periodontal tissues was analyzed. ResultsForce loading at the occlusal contact area C resulted in the greatest peak stress, followed by simultaneous loading at A and B, and then by loading at all the 3 contacts. The stress was concentrated mostly on the lateral walls of the central fossa of the occusal surface. The variation of stress distribution in the tooth with strain loading caused displacements of the tooth, which was the greatest with force loading at C, followed sequentially by loading at A, BC, AB, and B, and was the smallest with loading at AC and ABC. ConclusionOcclusal contact at A or C exclusively can be detrimental to maintaining the tooth contact stability and should be avoided, and occlusal adjustment to allow multiple occlusal contacts helps to disperse the occlusal stress.

参考文献/References:

[1]STONE J C, HANNAH A, NAGAR N. Dental occlusion and temporomandibular disorders[J]. Evid Based Dent, 2017, 18(3): 86-87. DOI: 10.1038/sj.ebd.6401258.
[2]RIBEIRO A A, AZCARATEPERIL M A, CADENAS M B, et al. The oral bacterial microbiome of occlusal surfaces in children and its association with diet and caries[J]. PLoS ONE, 2017, 12(7): e0180621. DOI: 10.1371/journal.pone.0180621.
[3]易新竹. 牙合学[M]. 2版. 北京: 人民卫生出版社, 2008: 10.
YI X Z. Gnathology[M]. 2nd Ed. Beijing: People’s Medical Publishing House, 2008: 10.
[4]MACDONALD J W, HANNAM A G. Relationship between occlusal contacts and jawclosing muscle activity during tooth clenching: Part Ⅱ[J]. J Prosthet Dent, 1984, 52(6): 862-867. DOI: 10.1016/00223913(84)901495.
[5]NAVROTCHI C, BADEA M E. The influence of occlusal stabilization appliances on cervical dystonia symptoms[J]. Clujul Med, 2017, 90(4): 438-444. DOI: 10.15386/cjmed824.
[6]皮昕. 口腔解剖生理学[M]. 北京: 人民卫生出版社, 2007: 1-316.
PI X. Oral anatomy and physiology[M]. Beijing: People’s Medical Publishing House, 2007: 1-316.
[7]BENAZZI S, KULLMER O, GROSSE I R, et al. Using occlusal wear information and finite element analysis to investigate stress distributions in human molars[J]. J Anat, 2011, 219(3): 259-272. DOI: 10.1111/j.14697580.2011.01396.x.
[8]高国宁, 王国友, 宋继武, 等. 下颌第一磨牙牙合面磨耗近中根受力影响的三维有限元分析[J]. 上海口腔医学, 2016, 25(2): 162-167.
GAO G N, WANG G Y, SONG J W, et al. Three dimensional finite element analysis of the influence of stress on occlusal surface of the mandibular first molar[J]. Shanghai J Stomatol, 2016, 25(2): 162-167.
[9]ZHANG H, CUI J W, LU X L, et al. Finite element analysis on tooth and periodontal stress under simulated occlusal loads[J]. J Oral Rehabil, 2017, 44(7): 526-536. DOI: 10.1111/joor.12512.
[10]SHEIHAM A, JAMES W P. Diet and dental caries: the pivotal role of free sugars reemphasized[J]. J Dent Res, 2015, 94(10): 1341-1347. DOI: 10.1177/0022034515590377.
[11]COSTALONGA M, HERZBERG M C. The oral microbiome and the immunobiology of periodontal disease and caries[J]. Immunol Lett, 2014, 162(2PtA): 22-38. DOI: 10.1016/j.imlet.2014.08.017.
[12]KRZYS'CIAK W, KOS'CIELNIAK D, PAPIEZ· M, et al. Effect of a lactobacillus salivarius probiotic on a doublespecies Streptococcus mutans and candida albicans caries biofilm[J]. Nutrients, 2017, 9(11): 1242.
[13]NISHIGAWA K, SUZUKI Y, ISHIKAWA T, et al. Effect of occlusal contact stability on the jaw closing point during tapping movements[J]. J Prosthodont Res, 2012, 56(2): 130-135. DOI: 10.1016/j.jpor.2011.04.005.
[14]IMAMURA Y, SATO Y, KITAGAWA N, et al. Influence of occlusal loading force on occlusal contacts in natural dentition[J]. J Prosthodont Res, 2015, 59(2): 113-120. DOI: 10.1016/j.jpor.2014.07.001.
[15]WANG M, MEHTA N. A possible biomechanical role of occlusal cuspfossa contact relationships[J]. J Oral Rehabil, 2013, 40(1): 69-79. DOI: 10.1111/j.13652842.2012.02333.x.
[16]DEJAK B, MLOTKOWSKI A, ROMANOWICZ M. Finite element analysis of mechanism of cervical lesion formation in simulated molars during mastication and parafunction[J]. J Prosthet Dent, 2005, 94(6): 520-529. DOI: 10.1016/j.prosdent.2005.10.001.
[17]曾艳, 王嘉德. 下颌第一恒磨牙三维有限元模型的建立及应力分析[J]. 中华口腔医学杂志, 2005, 40(5): 394-397.
ZENG Y, WANG J D. Establishment of the threedimensional finite element model of the first permanent mandibular molar and its stress analysis[J]. Chin J Stomatol, 2005, 40(5): 394-397.
[18]徐樱华.徐樱华实用牙合学[M].北京: 科学技术出版社, 2011: 1-2.
XU Y H. Practical Gnathology[M]. Beijing: Science and Technology Press, 2011: 1-2.
[19]陈新民, 赵云凤. 口腔生物力学[M]. 北京: 科学出版社, 2010.
CHEN X M, ZHAO Y F. Oral biomechanics[M]. Beijing: Science Press, 2010.
[20]MASUMOTO N, YAMAGUCHI K, FUJIMOTO S. Daily chewing gum exercise for stabilizing the vertical occlusion[J]. J Oral Rehabil, 2009, 36(12): 857-863. DOI: 10.1111/j.13652842.2009.02010.x.
[21]CHAI H. On crack growth in molar teeth from contact on the inclined occlusal surface[J]. J Mech Behav Biomed Mater, 2015, 44: 76-84. DOI: 10.1016/j.jmbbm.2014.12.014.
[22]FU G, DENG F, WANG L, et al. The threedimension finite element analysis of stress in posterior tooth residual root restored with postcore crown[J]. Dent Traumatol, 2010, 26(1): 64-69. DOI: 10.1111/j.16009657.2009.00829.x.
封[23]周晖. 种植修复体上部结构在功能咬合状态下的三维有限元分析[D]. 天津: 天津医科大学, 2003.
ZHOU H. 3dimensional finite element analysis of superstructure of an implant under functional occlusions[D].Tianjin: Tianjin Medical University, 2003.
[24]陈宇, 林正梅, 凌均棨. 牙隐裂患者咬合特征及牙体磨耗特点的临床观察[J]. 中华口腔医学杂志, 2009, 44(9): 520-523.
CHEN Y, LIN Z M, LING J Q. Clinical observation on the characteristics of occlusion and tooth abrasion in patients with cracked tooth[J]. Chin J Stomatol, 2009, 44(9): 520-523.

更新日期/Last Update: 2018-11-01