[1]苏帅,张琪琳,王云龙,等.GSK-3β抑制剂对肾移植冷缺血再灌注损伤的保护作用[J].第三军医大学学报,2018,40(18):1653-1662.
 SU Shuai,ZHANG Qilin,WANG Yunlong,et al.Inhibition of glycogen synthase kinase 3β attenuates cold ischemia/reperfusion injury in rat kidney graft[J].J Third Mil Med Univ,2018,40(18):1653-1662.
点击复制

GSK-3β抑制剂对肾移植冷缺血再灌注损伤的保护作用(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第18期
页码:
1653-1662
栏目:
基础医学
出版日期:
2018-09-30

文章信息/Info

Title:
Inhibition of glycogen synthase kinase 3β attenuates cold ischemia/reperfusion injury in rat kidney graft
作者:
苏帅张琪琳王云龙冉瑞图尹志康
重庆医科大学附属第一医院泌尿外科
Author(s):
SU Shuai ZHANG Qilin WANG Yunlong RAN Ruitu YIN Zhikang

Department of Urology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China

关键词:
糖原合成酶3&beta转录核因子&kappaB肾移植缺血再灌注损伤
Keywords:
glycogen synthase kinase 3&beta nuclear factor-&kappaB renal transplantation ischemia/reperfusion injury
分类号:
R617;R692;R977.3
文献标志码:
A
摘要:

目的    分析GSK-3β抑制剂TDZD-8对大鼠肾移植缺血再灌注损伤(ischemia reperfusion injury, IRI)中NFκB的活化、炎症反应和氧化应激的作用。方法      选用250~280 g雄性SD大鼠,建立大鼠肾移植模型和冷IRI模型。肾移植模型:将大鼠分为假手术组、肾移植组、肾移植+5 mg/kg TDZD-8组和肾移植+1 mg/kg TDZD-8组,每组6只;冷缺血再灌注模型:将大鼠分为假手术组、IRI组、IRI+5 mg/kg TDZD-8组和IRI+1 mg/kg TDZD-8组,每组6只。采用Western blot和IHC检测两个模型各组大鼠pRelA/p65、p-GSK-3β、GSK-3β、RelA/p65变化;ELISA检测血清TNF-α、IL-1β、SOD和MDA的变化;HE染色观察肾脏的病理改变,进行肾小管坏死评分;检测血清肌酐和尿素氮。结果     与假手术组相比,肾移植组或冷IRI组血清肌酐、尿素氮、TNF-α、IL-1β和MDA活性明显增高(P<0.01),血清SOD活性降低(P<0.01),肾小管坏死评分明显升高(P<0.01);免疫组化检测结果显示p-GSK-3β和p-RelA/p65磷酸化水平上调(P<0.01),Western blot检测结果显示NF-κB p65活性升高和GSK-3β活性降低(P<0.01),病理损伤加重。使用TDZD-8干预后,大鼠血清肌酐、尿素氮、TNF-α、IL-1β和MDA活性降低(P<0.05),血清SOD活性升高(P<0.05),肾小管坏死评分降低(P<0.05);免疫组化检测结果显示p-GSK-3β和p-RelA/p65磷酸化水平下调(P<0.05),Western blot检测结果显示NF-κB p65活性降低并且GSK-3β活性增高(P<0.05),病理损伤减轻。结论      GSK-3β抑制剂能降低NF-κB活性,下调NFκB的磷酸化,减少下游炎症因子的释放,减轻肾脏病理和氧化应激损伤,减轻肾移植缺血再灌注损伤。

Abstract:

Objective     To investigate the effect of TDZD-8, a glycogen synthase kinase 3β (GSK3β) inhibitor, on the activation of nuclear factor-κB (NF-κB) and oxidative stress in ischemia reperfusion injury (IRI) in the kidney graft of rats. Methods     Male SD rats were randomized into renal transplantation (RT) model group and cold IRI model group. In both groups, the rats were subdivided into sham-operated group, RT group, RT+TDZD8 (5 mg/kg) group and RT+TDZD-8 (1 mg/kg) group (n=6). Western blotting and immunohistochemistry were used to observe the changes in p-RelA/p65, p-GSK-3β, GSK-3β and RelA/p65 in the renal graft, and the changes in serum tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were determined with enzyme-linked immunosorbent assay (ELISA). The pathological changes in the graft were observed with HE staining and renal tubular necrosis scores were assessed. A colorimetric assay was used to detect the changes in serum creatinine and urea nitrogen of the rats. Results      Compared with sham-operated group, the recipient rats in RT model and cold IRI model groups showed significantly increased serum levels of creatinine, urea nitrogen, TNF-α, IL-1β, and MDA (P<0.01), lowered serum SOD activity (P<0.01), and increased renal tubular necrosis scores (P<0.01); the expression levels of p-RelA/p65 and p-GSK-3β and NF-κB p65 activity were significantly increased (P<0.01) and GSK-3β activity was decreased (P<0.01) in the renal graft. Interventions with TDZD-8 in the 2 models significantly decreased serum levels of creatinine, urea nitrogen, TNF-α, IL-1β, and MDA (P<0.05), elevated serum SOD activity (P<0.05) and lowered the renal tubular necrosis score (P<0.05), and decreased p-RelA/p65 and p-GSK-3β expression levels and NF-κB p65 activity in the graft (P<0.05), Western blotting showed decreased NF-κB p65 activity but enhanced GSK-3β activity (P<0.05).  Conclusion     GSK-3β inhibitor can lower NF-κB activity, down-regulate the phosphorylation of NF-κB, and reduce the release of the downstream inflammatory factors to alleviate pathological changes and oxidative stress and reduce IRI in the renal graft.

参考文献/References:

[1]FRAME S, COHEN P. GSK3 takes centre stage more than 20 years after its discovery[J]. Biochem J, 2001, 359(Pt 1): 1-16. DOI: 10.1042/02646021:3590001.
[2]WANG Y, HUANG W C, WANG C Y, et al. Inhibiting glycogen synthase kinase3 reduces endotoxaemic acute renal failure by downregulating inflammation and renal cell apoptosis[J]. Br J Pharmacol, 2009, 157(6): 1004-1013. DOI: 10.1111/j.14765381.2009.00284.x.
[3]WANG Y, YANG R, GU J, et al. Cross talk between PI3KAKTGSK3β and PP2A pathways determines tau hyperphosphorylation[J]. Neurobiol Aging, 2015, 36(1): 188-200. DOI: 10.1016/j.neurobiolaging.2014.07.035.
[4]DUGO L, COLLIN M, THIEMERMANN C. Glycogen synthase kinase 3beta as a target for the therapy of shock and inflammation[J]. Shock, 2007, 27(2): 113-123. DOI:10. 1097/01.shk.0000238059.23837.68.
[5]CAO Q, KARTHIKEYAN A, DHEEN S T, et al. Production of proinflammatory mediators in activated microglia is synergistically regulated by Notch1, glycogen synthase kinase (GSK3β) and NFκB/p65 signalling[J]. PLoS ONE, 2017, 12(10): e0186764. DOI: 10.1371/journal.pone. 0186764.
[6]SPANJOL J, CELIC'  T, JAKLJEVIC'  T, et al. Surgical technique in the rat model of kidney transplantation[J]. Coll Antropol, 2011, 35(Suppl 2): 87-90.
[7]YE D, HENG B, LAI C, et al. A recommended technique of renal vein anastomosis in rat kidney transplantation for trainee[J]. Chin Med J, 2014, 127(10): 1919-1923.
[8]An experimental model for assessment of renal recovery from warm ischemia[J]. Transplantation, 1983, 35(3): 198-204. DOI:10.1097/0000789019830300000002.
[9]VOELKL J, MIA S, MEISSNER A, et al. PKB/SGKresistant GSK3 signaling following unilateral ureteral obstruction[J]. Kidney Blood Press Res, 2013, 38(1): 156-164. DOI:10.1159/000355763.
[10]RAMIREZ S H, FAN S, ZHANG M, et al. Inhibition of glycogen synthase kinase 3beta (GSK3beta) decreases inflammatory responses in brain endothelial cells[J]. Am J Pathol, 2010, 176(2): 881-892. DOI: 10.2353/ajpath. 2010.090671.
[11]GUO F, JIANG T, SONG W, et al. Electroacupuncture attenuates cerebral ischemiareperfusion injury in diabetic mice through adiponectin receptor 1mediated phosphorylation of GSK3β[J]. Mol Neurobiol, 2015, 51(2): 685-695. DOI: 10.1007/s120350148765y.
[12]REN F, DUAN Z, CHENG Q, et al. Inhibition of glycogen synthase kinase 3 beta ameliorates liver ischemia reperfusion injury by way of an interleukin10mediated immune regulatory mechanism[J]. Hepatology, 2011, 54(2): 687-696. DOI: 10.1002/hep.24419.
[13]DUGO L, COLLIN M, ALLEN D A, et al. GSK3beta inhibitors attenuate the organ injury/dysfunction caused by endotoxemia in the rat[J]. Crit Care Med, 2005, 33(9): 1903-1912.
[14]GUI B, HUA F, CHEN J, et al. Protective effects of pretreatment with oleanolic acid in rats in the acute phase of hepatic ischemiareperfusion injury: role of the PI3K/Akt pathway[J]. Mediators Inflamm, 2014, 2014: 451826. DOI: 10.1155/2014/451826.
[15]MOKHTARI B, BADALZADEH R, ALIHEMMATI A, et al.Phosphorylation of GSK3β and reduction of apoptosis as targets of troxerutin effect on reperfusion injury of diabetic myocardium[J]. Eur J Pharmacol, 2015, 765: 316-321. DOI: 10.1016/j.ejphar.2015.08.056.
[16]ZHANG F, PHIEL C J, SPECE L, et al. Inhibitory phosphorylation of glycogen synthase kinase3 (GSK3) in response to lithium. Evidence for autoregulation of GSK3[J]. J Biol Chem, 2003, 278(35): 33067-33077. DOI: 10.1074/jbc.M212635200.
[17]SHIH R H, WANG C Y, YANG C M. NFkappaB signaling pathways in neurological inflammation: a mini review[J]. Front Mol Neurosci, 2015, 8: 77. DOI: 10.3389/fnmol. 2015.00077.
[18]MARKó L, VIGOLO E, HINZE C, et al. Tubular epithelial NFκB activity regulates ischemic AKI[J]. J Am Soc Nephrol, 2016, 27(9): 2658-2669. DOI: 10.1681/ASN.2015070748.
[19]CORTSVIEYRE R, BRAVOPATIO A, VALDEZALARCN J J, et al. Role of glycogen synthase kinase3 beta in the inflammatory response caused by bacterial pathogens[J]. J Inflamm (Lond), 2012, 9(1): 23. DOI: 10.1186/1476 9255923.
[20]ZHANG Y D, DING X J, DAI H Y, et al. SB216763, a GSK3β inhibitor, protects against aldosteroneinduced cardiac, and renal injury by activating autophagy[J]. J Cell Biochem, 2018, 119(7): 5934-5943. DOI: 10.1002/jcb.26788.
[21]CHHABRA M, CONLON T M, SAEBPARSY K, et al. BAFF and associated TNF superfamily members in renal transplantation: an end to BLySful ignorance[J]. Transplantation, 2013, 96(10): 853-859. DOI: 10.1097/TP. 0b013e3182997d34.
[22]KOVACS K, TOTH A, DERES P, et al. Critical role of PI3kinase/Akt activation in the PARP inhibitor induced heart function recovery during ischemiareperfusion[J]. Biochem Pharmacol, 2006, 71(4): 441-452. DOI: 10.1016/j.bcp.2005.05.036.
[23]ZHAO W, GAN X, SU G, et al. The interaction between oxidative stress and mast cell activation plays a role in acute lung injuries induced by intestinal ischemiareperfusion[J]. J Surg Res, 2014, 187(2): 542-552. DOI: 10.1016/j.jss.2013.10.033.
[24]HUSSEIN A M, ABDELKHABIR A, ABOZAHRA A, et al. Pancreatic injury secondary to renal ischemia/reperfusion (I/R) injury: possible role of oxidative stress[J]. Physiol Res, 2014, 63(1): 47-55.
[25]QIAO X, LI R S, LI H, et al. Intermedin protects against renal ischemiareperfusion injury by inhibition of oxidative stress[J].Am J Physiol Renal Physiol, 2013, 304(1): F112-F119. DOI: 10.1152/ajprenal.00054.2012.
[26]LI X D, SUN G F, ZHU W B,et al. Effects of high intensity exhaustive exercise on SOD, MDA, and NO levels in rats with knee osteoarthritis[J].Genet Mol Res, 2015, 14(4): 12367-12376. DOI: 10.4238/2015.October.16.3.

更新日期/Last Update: 2018-09-29