[1]卜凡,解栋梁,舒彬,等.应用多重荧光标记的流式细胞分选技术检测小鼠肌卫星细胞数量及其分化能力的增龄性变化[J].第三军医大学学报,2018,40(18):1630-1635.
 BU Fan,XIE Dongliang,SHU Bin,et al.Fluorescence-activated cell sorting coupled with multiplex immunofluorescent labeling for assessing agerelated changes in quantity and differentiation capability of mouse muscle satellite cells[J].J Third Mil Med Univ,2018,40(18):1630-1635.
点击复制

应用多重荧光标记的流式细胞分选技术检测小鼠肌卫星细胞数量及其分化能力的增龄性变化(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第18期
页码:
1630-1635
栏目:
基础医学
出版日期:
2018-09-30

文章信息/Info

Title:
Fluorescence-activated cell sorting coupled with multiplex immunofluorescent labeling for assessing agerelated changes in quantity and differentiation capability of mouse muscle satellite cells
作者:
卜凡 解栋梁 舒彬 杨忠
重庆医科大学第四临床学院康复中心;陆军军医大学(第三军医大学)药学与检验医学系临床血液学教研室
Author(s):
BU Fan XIE Dongliang SHU Bin YANG Zhong

Rehabilitation Center, University-town Affiliated Hospital of Chongqing Medical University, Chongqing, 401121; Department of Clinical Hematology, Faculty of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China

关键词:
小鼠肌卫星细胞流式细胞分选技术分化
Keywords:
mice muscle satellite cells fluorescence-activated cell sorting differentiation
分类号:
R322.74; R329-33; R329.24
文献标志码:
A
摘要:

目的    应用流式细胞分选技术(fluorescenceactivated cell sorting, FACS)分离检测不同鼠龄小鼠骨骼肌卫星细胞数量并观察其成肌分化能力。方法    取雄性C57BL小鼠腓肠肌等组织,机械剪碎后胶原酶/分散酶联合消化,过滤离散细胞进行免疫标记染色,流式细胞仪分选CD45-/CD31-/Sca1-/ɑ7-integrin+细胞群体,培养分选细胞并进行Pax7和Desmin肌原性分子鉴定和分化诱导;观察比较青年、成年和老年小鼠骨骼肌组织中静止肌卫星细胞数量和成肌分化能力的变化。结果    分选出的成年CD45-/CD31-/Sca1-/α7integrin+细胞群体约占离散细胞总数的2%~3%,呈现Pax7、Desmin等染色阳性,经分化诱导能形成典型肌管并表达胚胎肌球蛋白重链(eMHC),青年组小鼠静止卫星细胞比例及每克肌肉内肌卫星细胞数量明显较高(P<0.05),老年组则明显下降(P<0.05),同时其肌管融合指数及大肌管比例明显减少(P<0.05)。结论    基于多重免疫荧光标记的流式分选术能实现骨骼肌卫星细胞的快速高效分离,分选细胞可诱导形成肌管;老年骨骼肌组织肌卫星细胞数量与功能呈现显著下降。

Abstract:

Objective    To isolate and count of skeletal muscle satellite cells (MSCs) in mice at different ages based on fluorescence-activated cell sorting (FACS) coupled with multiplex immunofluorescent labeling and observe the differentiation capacity of the cells. Methods    The hindlimb muscles including the gastrocnemius were harvested from male C57BL mice and then cutted and digested with collagenase and dispase. The discrete cells were filtered and stained for CD45 (FITC), CD31 (FITC), Sca1 (PE-cy7) and α7-integrin (PE). The population of CD45-/ CD31-/ Sca1-/ α7-integrin+ cells was sorted by flow cytometry, and after characterization for expression of the myogenic molecules Pax7 and Desmin, the sorted cells were cultured and induced for myogenic differentiation. The quantity and differentiation capacity of the MSCs from young, adult and aged mice were assessed. Results    The population of CD45-/CD31-/Sca1-/α7-integrin+ cells, which were positive for Pax7 and Desmin, accounted for 2%~3% in the total adult discrete cells. After myogenic differentiation, the cells formed typical myotubes and expressed embryonic myosin heavy chain (eMHC). The total number of quiscent MSCs sorted and the number of quiscent MSCs per gram muscle were the largest in young mice (P<0.05), and were decreased significantly in aged mice (P<0.05). The myotube fusion index and the ratio of large myotube formation were significantly reduced in the MSCs derived from aged mice(P<0.05). Conclusion    FACS coupled with multiplex immunofluorescent labeling allows efficient separation of mouse MSCs, which can form typical myotubes in culture. The number and differentiation capacity of quiscent MSCs in the skeletal muscles decrease significantly in aged mice.

参考文献/References:

[1]DUMONT N A, BENTZINGER C F, SINCENNES M C, et al.Satellite cells and skeletal muscle regeneration[J]. Compr Physiol, 2015, 5(3): 1027-1059. DOI: 10.1002/cphy.c140068.
[2]PETRALIA R S, MATTSON M P, YAO P J. Aging and longevity in the simplest animals and the quest for immortality[J]. Ageing Res Rev, 2014, 16: 66-82. DOI: 10.1016/j.arr.2014.05.003.
[3]SO W K, CHEUNG T H. Molecular regulation of cellular quiescence: a perspective from adult stem cells and its niches[J]. Methods Mol Biol, 2018, 1686: 1-25. DOI: 10.1007/9781493973712_1.
[4]LIU L, RANDO T A.Manifestations and mechanisms of stem cell aging[J]. J Cell Biol, 2011, 193(2): 257-266. DOI: 10.1083/jcb.201010131.
[5]FISHER A L. Of worms and women: sarcopenia and its role in disability and mortality[J]. J Am Geriatr Soc, 2004, 52(7): 1185-1190. DOI: 10.1111/j.15325415.2004.52320.x.
[6]SOUSAVICTOR P, GUTARRA S, GARC APRAT L, et al. Geriatric muscle stem cells switch reversible quiescence into senescence[J]. Nature, 2014, 506(7488): 316-321. DOI: 10.1038/nature13013.
[7]PASUT A, OLEYNIK P, RUDNICKI M A. Isolation of muscle stem cells by fluorescence activated cell sorting cytometry[J]. Methods Mol Biol, 2012, 798: 53-64. DOI: 10.1007/9781617793431_3.
[8]GROMOVA A, TIERNEY M T, SACCO A.FACSbased satellite cell isolation from mouse hind limb muscles[J]. Bio Protoc, 2015, 5(16).pii: e1558.
[9]MOZZETTA C. Isolation and culture of muscle stem cells[J]. Methods Mol Biol, 2016, 1480: 311-322. DOI: 10.1007/9781493963805_27.
[10]LATROCHE C, WEISSGAYET M, GITIAUX C, et al. Cell sorting of various cell types from mouse and human skeletal muscle[J]. Methods, 2018, 134-135: 50-55. DOI: 10.1016/j.ymeth.2017.12.013.
[11]薄海, 王逊, 陈啟祥, 等.耐力运动促进骨骼肌卫星细胞线粒体能量代谢及其对成肌分化的影响[J]. 中国运动医学杂志, 2012, 31(5): 402-408,426. DOI: 10.16038/j.10006710.2012.05.007.
BO H, WANG X, CHEN Q X, et al.Endurance exercise promotes mitochondrial bioenergetic metabolism in muscle satellite cells and its effect on the myogenic differentiation[J]. Chin J Sports Med, 2012, 31(5): 402-408,426. DOI: 10.16038/j.10006710.2012.05.007.
[12]MOTOHASHI N, ASAKURA Y, ASAKURA A.Isolation, culture, and transplantation of muscle satellite cells[J]. J Vis Exp, 2014(86). DOI: 10.3791/50846.
[13]LIU L, CHEUNG T H, CHARVILLE G W, et al. Isolation of skeletal muscle stem cells by fluorescenceactivated cell sorting[J]. Nat Protoc, 2015, 10(10): 1612-1624. DOI: 10.1038/nprot.2015.110.
[14]JOE A W, YI L, NATARAJAN A, et al.Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis[J]. Nat Cell Biol, 2010, 12(2): 153-163. DOI: 10.1038/ncb2015.
[15]CASTIGLIONI A, HETTMER S, LYNES M D. Isolation of progenitors that exhibit myogenic/osteogenic bipotency in vitro by fluorescenceactivated cell sorting from human fetal muscle[J]. Stem Cell Reports, 2014, 14, 2(1): 92-106. DOI: 10.1016/j.stemcr.2013.12.006.
[16]ASAKURA A, SEALE P, GIRGISGABARDO A, et al. Myogenic specification of side population cells in skeletal muscle[J]. J Cell Biol, 2002, 159(1): 123-134. DOI: 10.1083/jcb.200202092.
[17]MOTOHASHI N, ASAKURA Y, ASAKURA A.Isolation, culture, and transplantation of muscle satellite cells[J]. J Vis Exp, 2014,(86). DOI: 10.3791/50846.
[18]SEALE P, SABOURIN L A, GIRGISGABARDO A, et al. Pax7 is required for the specification of myogenic satellite cells[J]. Cell, 2000, 102(6): 777-786. DOI: 10.1016/s00928674(00)000660.
[19]TRAPECAR M, KELC R, GRADISNIK L, et al. Myogenic progenitors and imaging singlecell flow analysis: a model to study commitment of adult muscle stem cells[J]. J Muscle Res Cell Motil, 2014, 35(56): 249-257. DOI: 10.1007/s1097401493985.
[20]BOCKHOLD K J, ROSENBLATT J D, PARTRIDGE T A. Aging normal and dystrophic mouse muscle: analysis of myogenicity in cultures of living single fibers[J]. Muscle Nerve, 1998, 21(2): 173-183. DOI: 10.1002/(sici)10974598(199802)21: 2<173: : aidmus4>3.3.co;2t.
[21]GIZAK A, WROBEL E, MORACZEWSKI J, et al.Changes in subcellular localization of fructose 1, 6bisphosphatase during differentiation of isolated muscle satellite cells[J]. FEBS Lett, 2006, 580(17): 4042-4046. DOI: 10.1016/j.febslet.2006.06.042.
[22]ZAMMIT P S, GOLDING J P, NAGATA Y, et al. Muscle satellite cells adopt divergent fates: a mechanism for selfrenewal[J]. J Cell Biol, 2004, 166(3): 347-357. DOI: 10.1083/jcb.200312007.
[23]SABOURIN L A, GIRGISGABARDO A, SEALE P, et al. Reduced differentiation potential of primary MyoD/ myogenic cells derived from adult skeletal muscle[J]. J Cell Biol, 1999, 144(4): 631-643. DOI: 10.1083/jcb.144.4.631.
[24]ARCHACKA K, POZZOBON M, REPELE A, et al. Culturing muscle fibres in hanging drop: a novel approach to solve an old problem[J]. Biol Cell, 2014, 106(2): 72-82. DOI: 10.1111/boc.201300028.
[25]BRACK A S, RANDO T A. Tissuespecific stem cells: lessons from the skeletal muscle satellite cell[J]. Cell Stem Cell, 2012, 10(5): 504-514. DOI: 10.1016/j.stem.2012.04.001.
[26]JONES D L, RANDO T A.Emerging models and paradigms for stem cell ageing[J]. Nat Cell Biol, 2011, 13(5): 506-512. DOI: 10.1038/ncb0511506.
[27]BIAN A, NEYRA J A, ZHAN M, et al. Klotho, stem cells, and aging[J]. Clin Interv Aging, 2015, 10: 1233-1243. DOI: 10.2147/CIA.S84978.
[28]FORD L B, HANSELL C A, NIBBS R J.Using fluorescent chemokine uptake to detect chemokine receptors by fluorescent activated cell sorting[J]. Methods Mol Biol, 2013, 1013: 203-214. DOI: 10.1007/9781627034265_13.

更新日期/Last Update: 2018-09-28