[1]寇婷婷,熊宇,崔岳,等.两种脱矿液在粘接前表面处理牙本质时的脱矿动力学曲线比较及其对胶原酶解的影响[J].第三军医大学学报,2018,40(12):1155-1160.
 KOU Tingting,XIONG Yu,CUI Yue,et al.Comparison of demineralization kinetic curves of 2 commonly used demineralizing solutions and their effects on collagen dissolution and degradation before dentin bonding[J].J Third Mil Med Univ,2018,40(12):1155-1160.
点击复制

两种脱矿液在粘接前表面处理牙本质时的脱矿动力学曲线比较及其对胶原酶解的影响(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第12期
页码:
1155-1160
栏目:
生物医学工程
出版日期:
2018-06-30

文章信息/Info

Title:
Comparison of demineralization kinetic curves of 2 commonly used demineralizing solutions and their effects on collagen dissolution and degradation before dentin bonding
作者:
寇婷婷熊宇崔岳蔡江文朱璨周继祥
陆军军医大学(第三军医大学)第一附属医院口腔科
Author(s):
KOU Tingting XIONG Yu CUI Yue CAI Jiangwen ZHU Can ZHOU Jixiang

Department of Stomatology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
 

关键词:
酸蚀脱矿胶原酶解动力学曲线牙本质
Keywords:
acid etching demineralization collagenase kinetic curves dentin  
分类号:
R313;R783.1;R988.2
文献标志码:
A
摘要:

目的比较37%磷酸和17% EDTA对人牙本质的脱矿效率,并评价不同脱矿时间对人牙本质中Ⅰ型胶原基质降解速率的影响。方法制取等量人牙本质粉,分别以37%磷酸(Pi)与17% EDTA脱矿处理0 s(对照组)、10 s、15 s、30 s、60 s、120 s、72 h后离心荡洗。检测计算两种脱矿液的脱矿效率及胶原溶脱率并绘制动力学曲线。1 g/L Ⅰ型胶原酶溶液300 μL酶解样本沉淀,于1、7 d用羟脯胺酸(HYP)试剂盒测定并绘制胶原降解变化趋势图。利用Pearson相关系数分析脱矿总量与胶原溶脱、酶解1 d胶原降解量、酶解7 d胶原降解量及增量之间的相关性。结果磷酸组15 s即脱矿显著,胶原溶脱30 s明显增高(P<0.05),胶原降解量各时间点差异无统计学意义,降解增量15 s开始降低(P<0.05),脱矿量与胶原溶脱量及降解增量呈显著相关(r=0.864,r=-0.713,P<0.05)。EDTA组30 s明显脱矿,胶原溶脱较少,且120s内各时间点差异无统计学意义,胶原降解量30 s达峰值,随后各时间点胶原降解量明显降低(P<0.05),降解增量60s开始降低(P<0.05),脱矿量与胶原溶脱量呈显著相关(r=0.894,P<0.05)。结论磷酸脱矿效率迅速、高效,胶原溶脱率较高,稳定性较好;EDTA脱矿效率缓慢、持续,胶原溶脱率较低,稳定性尚可。临床进行牙本质粘结前表面处理牙本质时,以37%磷酸酸蚀10~15 s或17% EDTA表面处理60~90 s为较合理。

Abstract:

ObjectiveTo compare the demineralization efficiency of 37% phosphoric acid and 17% EDTA in human dentin and evaluate the effect of different etching time on the degradation rate of type Ⅰ collagen matrix in human dentin. MethodsEqual amounts of human dentin powder were demineralized with 37% phosphoric acid and 17% EDTA for 0 s (control group), 10, 15, 30, 60 and 120 s, or 72 h. After centrifugation and washing, the samples were analyzed for concentrations of Ca2+, Mg2+, and P5 in the washing solution using an automatic biochemical analyzer. The demineralization curves were drawn and the demineralization efficiency of the 2 demineralization solutions was compared. The precipitates in each group were enzymatically hydrolyzed on day 1 and day 7 with 300 μL type Ⅰ collagenase solution (1 g/L). Pearson correlation coefficient was used to analyze the correlation among the total demineralization, collagen dissolution and collagen degradation. ResultsTreatment with 37% phosphoric acid solution for 15 s caused obvious demineralization in the dentin samples, and collagen dissolution increased significantly at 30 s (P<0.05); collagen degradation levels did not show significant changes over time, and the increment of collagen degradation began to decrease significantly at 15 s (P<0.05). The amount pf demineralization was strongly correlated with collagen dissolution (r=0.864, P<0.05) and degradation increment (r=-0.713, P<0.05). Treatment with 17% EDTA for 30 s resulted in obvious demineralization of dentin but less obvious collagen dissolution, which showed no significant changes within 120 s of treatment (P<0.05); The peak level of collagen degradation occurred at 30 s followed by significant and progressive decreases (P<0.05), and the degradation increment began to decrease significantly at 60 s (P<0.05). The amount of demineralization was strongly correlated with collagen dissolution (r=0.894, P<0.05). ConclusionPhosphoric acid results in rapid and efficient demineralization of dentin with a high collagen dissolution rate, and the dentin collagen matrix has a good stability after demineralization. EDTA has a relatively low efficiency of demineralization and collagen dissolution, and the stability of dentin collagen matrix after demineralization is acceptable. Clinically, both 37% phosphoric acid with an etching time of 10~15 s and 17% EDTA acid with an etching time of 60~90 s can be optimal for dentin treatment before dentin bonding.

参考文献/References:

[1]赵三军, 陈吉华. 酸蚀时间对牙本质粘接界面纳米渗漏和粘接强度的影响[J]. 实用口腔医学杂志, 2009, 25(1): 36-40. DOI: 10.3969/j.issn.10013733.2009.01.08.
ZHAO S J, CHEN J H. Effects of acid etching time on nanoleakage and microtensile bond strength of the adhesivedentin bond[J]. J Pract Stomatol, 2009, 25(1): 36-40. DOI: 10.3969/j.issn.10013733.2009.01.08.
[2]裴丹丹, 黄雪清, 黄翠. 牙本质混合层降解及其与牙本质粘接耐久性的关系[J]. 中华口腔医学杂志, 2011, 46(1): 58-60. DOI: 10.3760/cma.j.issn.10020098.2011.01.018.
PEI D D, HUANG X Q, HUANG C.Association of the degradation of the hybrid layer and the durability of dentin adhesion[J]. Chin J Stomatol, 2011, 46(1): 58-60. DOI: 10.3760/cma.j.issn.10020098.2011.01.018.
[3]何恩宝, 王彦, 梁澜晨, 等.聚乙烯磷酸对牙本质基质金属蛋白酶活性的影响[J]. 中华口腔医学研究杂志(电子版), 2013, 7(4): 288-292. DOI: 10.3877/cma.j.issn.16741366.2013.04.006.
HE E B, WANG Y, LIANG L C, et al. The influence of polyvinylphosphonic acid on matrix metalloproteinases activities in dentin[J]. Chin J Stomatol Res(Electron Ed), 2013, 7(4): 288-292. DOI: 10.3877/cma.j.issn.16741366.2013.04.006.
[4]周恬, 朱梓园, 张保卫. 牙本质内基质金属蛋白酶的测定及其对牙本质胶原降解作用的研究[J]. 口腔医学, 2012, 32(1): 25-28.
ZHOU T, ZHU Z Y, ZHANG B W. Study of measurement of matrix metalloproteinases in crown and root dentin and their effects on degradation of collagen fibers[J]. Stomatology, 2012, 32(1): 25-28.
[5]SAURO S, TOLEDANO M, AGUILERA F S.Resindentin bonds to EDTAtreated vs. acidetched dentin using ethanol wetbonding. Part Ⅱ: Effects of mechanical cycling load on microtensile bond strengths[J]. Dent Mater, 2011, 27(6): 563-572. DOI: 10.1016/j.dental.2011.02.010.
[6]OSORIO R, ERHARDT M C, PIMENTA L A, et al. EDTA treatment improves resindentin bonds’ resistance to degradation[J]. J Dent Res, 2005, 84(8): 736-740. DOI: 10.1177/154405910508400810.
[7]TJDERHANE L, NASCIMENTO F D, BRESCHI L, et al.Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins[J]. Dent Mater, 2013, 29(1): 116-135. DOI: 10.1016/j.dental.2012.08.004.
[8]HENCH L L.An Introduction to Bioceramics[M]. 2nd Edition. Singapore: World Scientific Publishing, 2013: 150-151.
[9]KUMAR Y, LOHAR J, BHAT S, et al.Comparative evaluation of demineralization of radicular dentin with 17% EDTA and MTAD at different time intervals——An invitro study[J]. Int Soc Prev Community Dent, 2016, 6(1): 44-48. DOI: 10.4103/22310762.175412.
[10]MISHRA V K, BHATTACHARJEE B N, KUMAR D, et al.Effect of a chelating agent at different pH on the spectroscopic and structural properties of microwave derived hydroxyapatite nanoparticles: a bone mimetic material[J]. New J Chemistry, 2016, 40(6): 5432-5441. DOI: 10.1039/C5NJ03322E.
[11]HEDENBJRKLAGER A, HAMBERG K, PKKNEN V, et al. Collagen degradation and preservation of MMP8 activity in human dentine matrix after demineralization[J]. Arch Oral Biol, 2016, 68: 66-72. DOI: 10.1016/j.archoralbio.2016.04.003.
[12]许强建, 李全利, 陈佳龙, 等.多巴胺对基质金属蛋白酶活性及牙本质胶原纤维降解的影响[J]. 中华口腔医学杂志, 2015, 50(3): 186-189. DOI: 10.3760/cma.j.issn.10020098.2015.03.015.
XU Q J, LI Q L, CHEN J L, et al. Effect of dopamine on the activity of matrix metalloproteinases and degradation of dentin collagen[J]. Chin J Stomatol, 2015, 50(3): 186-189.
[13]SAI K, SHIMAMURA Y, TAKAMIZAWA T, et al. Influence of degradation conditions on dentin bonding durability of three universal adhesives[J]. J Dent, 2016, 54: 56-61. DOI: 10.1016/j.jdent.2016.09.004.

相似文献/References:

[1]刘桥,林居红,王金华.含氟树脂封闭剂与玻璃离子封闭剂抑制牙釉质脱矿能力的体外研究[J].第三军医大学学报,2009,31(07):601.
 LIU Qiao,LIN Ju-hong,WANG Jin-hua.An in vitro study on inhibition of enamel demineralization by fluoride-releasing resin sealant and glass ionomer sealant[J].J Third Mil Med Univ,2009,31(12):601.
[2]刘鲁川,温秀杰.酸对人和牛牙齿组织脱矿力的对比研究[J].第三军医大学学报,2000,22(12):0.[doi:10.16016/j.1000-5404.2000.12.028 ]
 LIU Lu chuan,WEN Xiu jie.[J].J Third Mil Med Univ,2000,22(12):0.[doi:10.16016/j.1000-5404.2000.12.028 ]

更新日期/Last Update: 2018-07-03