[1]唐才智,任泂,高美娇,等.成纤维细胞生长因子受体2对小肠上皮细胞增殖与分化的影响[J].第三军医大学学报,2018,40(10):847-854.
 TANG Caizhi,REN Jiong,GAO Meijiao,et al.Effect of fibroblast growth factor receptor 2 on proliferation and differentiation of intestinal epithelial cells in adult mice[J].J Third Mil Med Univ,2018,40(10):847-854.
点击复制

成纤维细胞生长因子受体2对小肠上皮细胞增殖与分化的影响(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第10期
页码:
847-854
栏目:
基础医学
出版日期:
2018-05-30

文章信息/Info

Title:
Effect of fibroblast growth factor receptor 2 on proliferation and differentiation of intestinal epithelial cells in adult mice
作者:
唐才智任泂高美娇李旭东杨杰陈林王军平王锋超粟永萍
陆军军医大学(第三军医大学):军事预防医学系全军复合伤研究所,第三附属医院(野战外科研究所)创伤实验室,创伤、烧伤与复合伤国家重点实验室
Author(s):
TANG Caizhi REN Jiong GAO Meijiao LI Xudong YANG Jie CHEN Lin WANG Junping WANG Fengchao SU Yongping

State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, College of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038;2State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Institute of Surgery Research, Third Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China

关键词:
成纤维细胞生长因子受体2小肠上皮细胞分化细胞增殖
Keywords:
fibroblast growth factor receptor 2 intestinal epithelium differentiation proliferation
分类号:
R322.45;R329.28;R394.2
文献标志码:
A
摘要:

目的    探究成纤维细胞生长因子受体2(fibroblast growth factor receptor 2,Fgfr2)功能缺失对成年小鼠小肠上皮细胞增殖和分化的影响。方法    繁殖和培育小肠上皮Fgfr2条件性敲除小鼠,经他莫昔芬(tamoxifen)诱导,Western blot验证Fgfr2在肠上皮的特异性基因敲除情况;将诱导肠上皮敲除Fgfr2的小鼠作为实验组,同胎野生型小鼠作为对照组。利用免疫荧光技术对潘氏细胞和内分泌细胞占肠上皮细胞的比例进行计数,利用Alcian染色对杯状细胞占肠上皮细胞的比例进行计数;运用HE染色和免疫组化染色指标推断小肠上皮Fgfr2功能缺失对小肠上皮细胞增殖的影响。结果    经过转基因小鼠繁殖后诱导,Western blot检测结果显示小肠上皮特定敲除的Fgfr2小鼠构建成功;免疫荧光和Alcian染色结果显示:与对照组小鼠比较,Fgfr2敲除小鼠的十二指肠、空肠和回肠上皮潘氏细胞数量增加(P<0.05),杯状细胞数量减少(P<0.05),而内分泌细胞数量不变(P>0.05);HE染色和免疫组化染色结果显示:绒毛长度和隐窝深度以及增殖细胞数目未见明显变化(P>0.05)。结论    Fgfr2介导的微环境信号可参与调控成年小鼠小肠上皮分泌系细胞分化,但对小肠上皮细胞增殖无显著影响。

Abstract:

Objective    To investigate the effect of functional loss of fibroblast growth factor receptor 2 (Fgfr2) on the proliferation and differentiation of small intestinal epithelial cells in adult mice. Methods    Transgenic mice with conditional knockout of Fgfr2 gene in the small intestinal epithelium were bred and the offspring mice were identified for genotypes and tamoxifen-induced Fgfr2 gene knockout in the small intestinal epithelium. The small intestinal secretory cells were characterized by Alcian staining and immunofluorescence staining to analyze the proportions of different intestinal secretory cells in the epithelium. HE staining and immunohistochemistry were used to observe the length of the villus and crypt depth and quantify the proliferating cells in the crypt in Fgfr2-deficient mice and wild-type littermate mice. Results     After tamoxifen induction, the transgenic mice showed specific Fgfr2 knockout in the small intestinal epithelium as verified by Western blotting. Immunofluorescence and Alcian staining revealed significantly increased Paneth cells (P<0.05) and decreased goblet cells (P<0.05) in the small intestine epithelium of Fgfr2-deficient mice as compared with the wild-type littermate mice, but the number of small intestinal endocrine cells exhibited no significant changes in the transgenic mice. Immunohistochemistry and HE staining showed no significant changes in villus length, crypt depth or the ratio of proliferating cells in the crypt in Fgfr2-deficient mice as compared with the wild-type mice (all P>0.05). Conclusion    Fgfr2-mediated microenvironment signals affect the differentiation of small intestine epithelial cells in adult mice but have little effect on the proliferation of small intestinal epithelial cells.

参考文献/References:

[1]MORI-AKIYAMA Y, VAN DEN BORN M, VAN ES J H, et al. SOX9 is required for the differentiation of paneth cells in the intestinal epithelium[J]. Gastroenterology, 2007, 133(2): 539-546. DOI: 10.1053/j.gastro.2007.05.020.
[2]ORNITZ D M, ITOH N. The fibroblast growth factor signaling pathway[J]. Wiley Interdiscip Rev Dev Biol, 2015, 4(3): 215-266. DOI: 10.1002/wdev.176.
[3]DANOPOULOS S, SCHLIEVE C R, GRIKSCHEIT T C, et al. Fibroblast growth factors in the gastrointestinal tract: twists and turns[J]. Dev Dyn, 2017, 246(4): 344-352. DOI: 10.1002/dvdy.24491.
[4]AL ALAM D, DANOPOULOS S, SCHALL K, et al. Fibroblast growth factor 10 alters the balance between goblet and Paneth cells in the adult mouse small intestine[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 308(8): G678-G690. DOI: 10.1152/ajpgi.00158.2014.
[5]STARK K L, MCMAHON J A, MCMAHON A P. FGFR-4, a new member of the fibroblast growth factor receptor family, expressed in the definitive endoderm and skeletal muscle lineages of the mouse[J]. Development, 1991, 113(2): 641-651.
[6]SU N, JIN M, CHEN L. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models[J]. Bone Res, 2014, 2: 14003. DOI: 10.1038/boneres.2014.3.
[7]BRODRICK B, VIDRICH A, PORTER E, et al. Fibroblast growth factor receptor-3 (FGFR-3) regulates expression of paneth cell lineagespecific genes in intestinal epithelial cells through both TCF4/betacatenin-dependent and -independent signaling pathways[J]. J Biol Chem, 2011, 286(21): 18515-18525. DOI: 10.1074/jbc.M111.229252.
[8]LIU D W, TSAI S M, LIN B F, et al. Fibroblast growth factor receptor 2c signaling is required for intestinal cell differentiation in zebrafish[J]. PLoS ONE, 2013, 8(3): e58310. DOI: 10.1371/journal.pone.0058310.
[9]SCHALL K A, HOLOYDA K A, ISANI M, et al. Inhibition of Fgf signaling in short bowel syndrome increases weight loss and epithelial proliferation[J]. Surgery, 2017, 161(3): 694-703. DOI: 10.1016/j.surg.2016.08.044.
[10]SPENCER-DENE B, SALA F G, BELLUSCI S, et al. Stomach development is dependent on fibroblast growth factor 10/fibroblast growth factor receptor 2bmediated signaling[J]. Gastroenterology, 2006, 130(4): 1233-1244. DOI: 10.1053/j.gastro.2006.02.018.
[11]YANG Q. Requirement of math1 for secretory cell lineage commitment in the mouse intestine[J]. Science, 2001, 294(5549): 2155-2158. DOI: 10.1126/science.1065718.
[12]VAN DEN BRINK G R, DE SANTA BARBARA P, ROBERTS D J.  Epithelial cell differentiation-a Mather of choice[J]. Science, 2001, 294(5549): 2115-2116. DOI: 10.1126/science.1067751.
[13]JENSEN J, PEDERSEN E E, GALANTE P, et al. Control of endodermal endocrine development by Hes-1[J]. Nat Genet, 2000, 24(1): 36-44. DOI: 10.1038/71657.
[14]VANDUSSEN KL, CARULLI AJ, KEELEY TM, et al. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells[J]. Development, 2012, 139(3): 488-497. DOI: 10.1242/dev.070763.
[15]FRE S, HUYGHE M, MOURIKIS P, et al. Notch signals control the fate of immature progenitor cells in the intestine[J]. Nature, 2005, 435(7044): 964-968. DOI: 10.1038/nature03589.
[16]VIDRICH A, BUZAN J M, BRODRICK B, et al. Fibroblast growth factor receptor3 regulates Paneth cell lineage allocation and accrual of epithelial stem cells during murine intestinal development[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 297(1): G168-G178. DOI: 10.1152/ajpgi.90589.2008.

相似文献/References:

[1]程晋,王锋超,孙慧勤,等.电离辐射诱导小鼠小肠隐窝和绒毛的基因表达分析[J].第三军医大学学报,2011,33(13):1318.
 Cheng Jin,Wang Fengchao,Sun Huiqin,et al.Gene expression profiles in intestinal crypt and villus of mice after ionizing radiation injury[J].J Third Mil Med Univ,2011,33(10):1318.

更新日期/Last Update: 2018-05-29