[1]张晨亮,林毅漳,周鑫,等.高盐对小鼠白色脂肪棕色化的影响及其中枢调控机制研究[J].第三军医大学学报,2018,40(10):868-874.
 ZHANG Chenliang,LIN Yizhang,ZHOU Xin,et al.Effect of high salt intake on browning of white adipose tissue in mice and mechanism of its central regulation[J].J Third Mil Med Univ,2018,40(10):868-874.
点击复制

高盐对小鼠白色脂肪棕色化的影响及其中枢调控机制研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第10期
页码:
868-874
栏目:
基础医学
出版日期:
2018-05-30

文章信息/Info

Title:
Effect of high salt intake on browning of white adipose tissue in mice and mechanism of its central regulation
作者:
张晨亮 林毅漳周鑫陈霞林树宋治远
陆军军医大学(第三军医大学)第一附属医院心血管内科,重庆市介入心脏病学研究所
Author(s):
ZHANG Chenliang LIN Yizhang ZHOU Xin CHEN Xia LIN Shu SONG Zhiyuan  

Department of Cardiology, Chongqing Institute of Interventional Cardiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China

关键词:
白色脂肪棕色化交感神经系统高盐解耦连蛋白1
Keywords:
white adipose tissue browning sympathetic nervous system high salt uncoupling protein-1
分类号:
R151.2;R349.15;R363.22
文献标志码:
A
摘要:

目的    研究高盐摄入对小鼠白色脂肪组织(white adipose tissue,WAT)棕色化的影响,探讨其可能的中枢调控机制。方法     采用随机数字表法将20只8周龄的C57BL/6J小鼠分为4组(n=5):短期高盐组与短期对照组(饲养24 h后处死,免疫组化法检测小鼠大脑cFos表达情况),长期高盐组与长期对照组(连续饲养8周,每周对体质量、体温、饮水、进食进行监测)。对照组正常饮水,高盐组给予含2%氯化钠的盐水。长期组实验结束后收集血清检测血脂水平。收集性腺脂肪和脑标本,用荧光定量PCR法检测性腺脂肪组织中解耦联蛋白-1(uncoupling protein-1,UCP-1)等棕色化相关调控基因的改变以及下丘脑室旁核脑源性生长因子(brain derived neurotrophic factor, BDNF)的mRNA表达。结果    短期高盐刺激后,小鼠下丘脑室旁核c-Fos表达高盐组(112.67±11.24)较对照组(30.67±5.51)明显增加(P<0.01)。 给予小鼠8周的高盐刺激后,小鼠血中甘油三酯[(0.75±0.19) mmol/L vs(1.07±0.08) mmol/L, P<0.05]和游离脂肪酸含量下降[(0.64±0.14)mmol/L vs(0.92±0.15)mmol/L, P<0.05],单侧性腺脂肪质量明显减轻[(0.11±0.01) g vs(0.15±0.01)g, P<0.01]。荧光定量PCR法检测发现高盐组WAT棕色化标志基因UCP1含量(4.62±0.94)较对照组(1.00±0.16)明显增加(P<0.01);下丘脑室旁核BDNF高盐组mRNA表达(3.14±0.31)较对照组(1.00±0.12)明显增加(P<0.01)。结论    长期高盐可诱导小鼠WAT棕色化,而下丘脑室旁核BDNF参与了其中的中枢调控过程。

Abstract:

Objective    To investigate the effect of high salt intake on the browning of white adipose tissue (WAT) in mice and explore the central regulatory mechanism underlying this effect. Methods    Twenty male C57BL/6J mice were randomly allocated into control and high salt intake groups and were given free access to normal water and 2% NaCl solution, respectively. Each group was further divided into 2 subgroups for observation at 24 h and at 8 weeks. The mice in 24 h groups were sacrificed for immunohistochemistry of c-Fos expression in the brain at 24 h. In 8 weeks groups, the mice were examined for body weight, body temperature, water intake and food intake on a weekly basis for 8 weeks, after which the mice were sacrificed for measurement of blood lipid levels and detection of mRNA expression of uncoupling protein-1 (UCP-1) in epididymal WAT and brain derived neurotrophic factor (BDNF) in the paraventricular nucleus (PVN) using qRT-PCR. Results    The mice with high salt intake for 24 h showed significantly increased number of c-Fos-positive neurons in the PVN compared with the corresponding control group (112.67±11.24 vs 30.67±5.51, P<0.01). Compared with the control group, high-salt intake for 8 weeks caused a significant decrease in the weight of WAT (0.11±0.01 vs 0.15±0.01 g, P<0.01), content of TG (0.75±0.19 vs 1.07±0.08 mmol/L, P<0.05) and levels of free fatty acids (0.64±0.14 vs 0.92±0.15 mmol/L, P<0.05), and significantly increased the transcriptional level of UCP-1 in the WAT (4.62±0.94 vs 1.00±0.16, P<0.01) and the mRNA expression of BDNF in the PVN (3.14±0.31 vs 1.00±0.12, P<0.01). Conclusion    Long-term high salt intake can induce the browning of WAT, and BDNF in the PVN participates in the central regulation of this process.

参考文献/References:

[1]OSBORN J W, FINK G D, SVED A F, et al. Circulating angiotensin Ⅱ and dietary salt: converging signals for neurogenic hypertension[J]. Curr Hypertens Rep, 2007, 9(3): 228-235. DOI: 10.1007/s11906-007-0041-3.
[2]ADAMS J M, MADDEN C J, SVED A F, et al. Increased dietary salt enhances sympathoexcitatory and sympathoinhibitory responses from the rostral ventrolateral medulla[J]. Hypertension, 2007, 50(2): 354-359. DOI: 10.1161/HYPERTENSIONAHA.107.091843
[3]邓文英, 陶婷, 张玉珍. 白色脂肪棕色化的研究进展[J]. 内科理论与实践, 2015, 10(6): 460-464. DOI: 10.16138/j.16736087.2015.06.016.
DENG W Y, TAO T, ZHANG Y Z. Research progress of the browning of white adipose[J]. J Intern Med Concepts Pract, 2015, 10(6): 460-464. DOI: 10.16138/j.16736087.2015.06.016.
[4]GIL A, OLZA J, GILCAMPOS M, et al. Is adipose tissue metabolically different at different sites?[J]. Int J Pediatr Obes, 2011, 6 Suppl 1: 13-20. DOI: 10.3109/17477166.2011.604326
[5]BAI Y, SUN Q. Macrophage recruitment in obese adipose tissue[J]. Obes Rev, 2015, 16(2): 127-136. DOI:  10.1111/obr.12242.
[6]MOISAN A, LEE Y K, ZHANG J D, et al. Whitetobrown metabolic conversion of human adipocytes by JAK inhibition[J]. Nat Cell Biol, 2015, 17(1): 57-67. DOI: 10.1038/ncb3075.
[7]PETROVIC N, WALDEN T B, SHABALINA I G, et al. Chronic peroxisome proliferatoractivated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1containing adipocytes molecularly distinct from classic brown adipocytes[J]. J Biol Chem, 2010, 285(10): 7153-7164. DOI: 10.1074/jbc.M109.053942.
[8]COELHO M S, PASSADORE M D, GASPARETTI A L, et al. High- or low-salt diet from weaning to adulthood: effect on body weight, food intake and energy balance in rats[J]. Nutr Metab Cardiovasc Dis, 2006, 16(2): 148-155. DOI: 10.1016/j.numecd.2005.09.001.
[9]DEJIMA Y, FUKUDA S, ICHIJOH Y, et al. Cold-induced salt intake in mice and catecholamine, renin and thermogenesis mechanisms[J]. Appetite, 1996, 26(3): 203-219. DOI: 10.1006/appe.1996.0016.
[10]NEDERGAARD J, CANNON B. The changed metabolic world with human brown adipose tissue: therapeutic visions[J]. Cell Metab, 2010, 11(4): 268-272. DOI: 10.1016/j.cmet.2010.03.007.
[11]SEALE P, BJORK B, YANG W, et al. PRDM16 controls a brown fat/skeletal muscle switch[J]. Nature, 2008, 454(7207): 961-967. DOI: 10.1038/nature07182.
[12]VERNOCHET C, PERES S B, DAVIS K E, et al. C/EBP alpha and the corepressors CtBP1 and CtBP2 regulate repression of select visceral white adipose genes during induction of the brown phenotype in white adipocytes by peroxisome proliferatoractivated receptor gamma agonists[J]. Mol Cell Biol, 2009, 29(17): 4714-4728. DOI: 10.1128/MCB.01899-08.
[13]OHNO H, SHINODA K, SPIEGELMAN B M, et al. PPARgamma agonists induce a whitetobrown fat conversion through stabilization of PRDM16 protein[J]. Cell Metab, 2012, 15(3): 395-404. DOI: 10.1016/j.cmet.2012.01.019.
[14]KLEINER S, MEPANI R J, LAZNIK D, et al. Development of insulin resistance in mice lacking PGC1alpha in adipose tissues[J]. Proc Natl Acad Sci U S A, 2012, 109(24): 9635-9640. DOI: 10.1073/pnas.1207287109.
[15]OELKRUG R, POLYMEROPOULOS E T, JASTROCH M. Brown adipose tissue: physiological function and evolutionary significance[J]. J Comp Physiol B, 2015, 185(6): 587-606. DOI: 10.1007/s00360-015-0907-7.
[16]CESARTOGNOLI L M, SALAMONI S D, TAVARES A A, et al. Effects of spider venom toxin PWTXI (6-Hydroxytrypargine) on the central nervous system of rats[J]. Toxins (Basel), 2011, 3(2): 142-162. DOI: 10.3390/toxins3020142.
[17]BOURQUE C W. Central mechanisms of osmosensation and systemic osmoregulation[J]. Nat Rev Neurosci, 2008, 9(7): 519-531. DOI: 10.1038/nrn2400.
[18]桂乐, 朱健华, 陈庆辉. 盐敏感性高血压与中枢调控机制[J]. 中华高血压杂志, 2010, 18(1): 34-37. DOI: 10.16439/j.cnki.16737245.2010.01.005.
GUI L, ZHU J H, CHEN Q H. Saltsensitive hypertension and central regulatory mechanism[J]. Chin J Hypertens, 2010,18(1): 34-37. DOI: 10.16439/j.cnki.16737245.2010.01.005.
[19]ERDOS B, BACKES I, MCCOWAN M L, et al. Brainderived neurotrophic factor modulates angiotensin signaling in the hypothalamus to increase blood pressure in rats[J]. Am J Physiol Heart Circ Physiol, 2015, 308(6): H612-H622. DOI: 10.1152/ajpheart.00776.2014.
[20]FONSECAALANIZ M H, BRITO L C, BORGES-SILVA C N, et al. High dietary sodium intake increases white adipose tissue mass and plasma leptin in rats[J]. Obesity (Silver Spring), 2007, 15(9): 2200-2208. DOI: 10.1038/oby.2007.261.
[21]PITYNSKIMILLER D, ROSS M, SCHMILL M, et al. A high salt diet inhibits obesity and delays puberty in the female rat[J]. Int J Obes, 2017, 41(11): 1685-1692. DOI: 10.1038/ijo.2017.154.
[22]WEIDEMANN B J, VOONG S, MORALESSANTIAGO F I, et al. Dietary sodium suppresses digestive efficiency via the reninangiotensin system[J]. Sci Rep, 2015, 5: 11123. DOI: 10.1038/srep11123.
[23]OKUDA M, ASAKURA K, SASAKI S, et al. Twentyfourhour urinary sodium and potassium excretion and associated factors in Japanese secondary school students[J]. Hypertens Res, 2016, 39(7): 524529. DOI: 10.1038/hr.2016.24.
[24]马冠生, 周琴, 李艳平, 等. 中国居民食盐消费情况分析[J]. 中国慢性病预防与控制, 2008, 16(4): 331-333. DOI: 10046194(2008)04-0331-03.
MA G S, ZHOU Q, LI Y P, et al. The salt consumption of residents in China[J]. Chin J Prev Contr Chron Dis, 2008, 16(4): 331-333. DOI: 1004-6194(2008)04-0331-03.
[25]SAEKI K, OBAYASHI K, TONE N, et al. Daytime cold exposure and salt intake based on nocturnal urinary sodium excretion: A crosssectional analysis of the HEIJOKYO study[J]. Physiol Behav, 2015, 152(Pt A): 300-306. DOI: 10.1016/j.physbeh.2015.10.015.

更新日期/Last Update: 2018-05-30