[1]张燕,鲜雨琦,高磊琼,等.四种中药单体成分体外抑制沙眼衣原体作用的筛查[J].第三军医大学学报,2018,40(14):1271-1278.
 ZHANG Yan,XIAN Yuqi,GAO Leiqiong,et al.Comparison of inhibitory effects of 4 effective components of traditional Chinese drugs on Chlamydia trachomatis in vitro[J].J Third Mil Med Univ,2018,40(14):1271-1278.
点击复制

四种中药单体成分体外抑制沙眼衣原体作用的筛查(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第14期
页码:
1271-1278
栏目:
基础医学
出版日期:
2018-07-30

文章信息/Info

Title:
Comparison of inhibitory effects of 4 effective components of traditional Chinese drugs on Chlamydia trachomatis in vitro
作者:
张燕鲜雨琦高磊琼沈犁华子瑜
重庆医科大学附属儿童医院儿科研究所,儿童发育疾病研究教育部重点实验室;儿童发育重大疾病国家国际科技合作基地;儿科学重庆市重点实验室
Author(s):
ZHANG Yan XIAN Yuqi GAO Leiqiong SHEN Li HUA Ziyu

Institute of Pediatrics, Key Laboratory of Child Development and Disorders of Ministry of Education, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, 400014, China

关键词:
中药黄连素沙眼衣原体
Keywords:
traditional Chinese drugs berberine Chlamydia trachomatis
分类号:
R285.5;R374.1
文献标志码:
A
摘要:

目的    利用沙眼衣原体(Chlamydia trachomatis, Ct)菌株Ct-L2/PompAGFP,快速筛查黄连素、雷公藤红素、黄芩苷、三羟黄酮体外抑制Ct作用。方法    通过CCK-8检测药物细胞毒性作用,得出50%细胞毒性药物浓度(50% cytotoxic concentration,CC50);通过菌株Ct-L2/PompAGFP快速筛查四种中药体外抑制Ct的效果,得出50%抑制率药物浓度(50% inhibitory concentrations,IC50);使用治疗指数(therapeutic index,TI)综合评估药物安全性和有效性。选择安全药物浓度(≥90%细胞存活率),通过活细胞实时观察、免疫荧光染色和末端包涵体形成单位测定,再次确认药物的细胞毒性和体外抑制Ct作用。结果    黄连素、雷公藤红素、黄芩苷、三羟黄酮的CC50(mean±SD)分别为(97.0±2.2)、(2.0±0.08)、(557.1±29.1)、(205.8±9.1);IC50(mean±SD)分别为(2.73±0.09)、(0.60±0.02)、(260.0±10.2)、(60.9±3.8);TI分别为35.5、3.3、2.1、3.4,提示黄连素更安全有效。黄连素、雷公藤红素、黄芩苷、三羟黄酮安全药物浓度分别为10.0、0.2、80.0、10.0 μmol/L,结果显示黄连素具有明显的Ct抑制作用(P<0.000 1),其他3种药物无明显抑制Ct作用。结论    黄连素可能成为抑制Ct安全有效的药物。

Abstract:

Objective    To compare the inhibitory effects of the effective components derived from 4 traditional Chinese drugs, namely berberine (BER), celastrol (CEL), baicalin, and baicalein, on Chlamydia trachomatis (Ct) CtL2/PompA-GFP strain in vitro. Methods    CCK-8 assay was used to determine the 50% cytotoxic concentration (CC50) of the 4 agents in human cervical cancer HeLa 229 cells according to the dose-cytotoxicity curve. The inhibitory effect of each agent on Ct was estimated by observing the decrease in GFP intensity, and the 50% inhibitory concentration (IC50) of each agent was calculated based on the dose-inhibition curve. The therapeutic index (TI) was used to assess both the safety and efficacy of the 4 agents. Using the safe drug concentration (defined as a ≥90% cell viability in HeLa 229 cells), the safety and efficacy of the agents for inhibiting Ct were further assessed by observing the live cells, immunofluorescence assay (IFA) and endpoint inclusion-forming unit assay (IFUs). Results    The CC50s of BER, CEL, baicalin and baicalein were 97.0±2.2, 2.0±0.08, 557.1±29.1, and 205.8±9.1, respectively and their IC50s were 2.73±0.09, 0.60±0.02, 260.0±10.2, and 60.9±3.8, respectively. The TIs of BER, CEL, baicalin and baicalein were 35.5, 3.3, 2.1, and 3.4, respectively, showing a better safety and a stronger efficacy of BER among the 4 agents. The safe concentrations of BER, CEL, baicalin and baicalein in HeLa 229 cells were 10, 0.2, 80, and 10 μmol/L, respectively. The results showed that BER could markedly inhibit Ct (P<0.0001), while the other 3 agent did not produce obvious inhibitory effect on Ct. Conclusion    BER can obviously inhibit Ct in vitro and may serve as a potent anti-chlamydia drug with a good safety profile.

参考文献/References:

[1]MOULDER J W. Interaction of chlamydiae and host cells in vitro [J]. Microbiol Rev, 1991, 55(1): 143.
[2]ELWELL C, MIRRASHIDI K, ENGEL J. Chlamydia cell biology and pathogenesis [J]. Nat Rev Microbiol, 2016, 14(6): 385. DOI: 10.1038/nrmicro.2016.30.
[3]MoRR S A, ROZENDAAL L, VAN VALKENGOED I G, et al. Urogenital Chlamydia trachomatis serovars in men and women with a symptomatic or asymptomatic infection: an association with clinical manifestations? [J]. J Clin Microbiol, 2000, 38(6): 2292.
[4]陈曦, 刘朝晖. 生殖道沙眼衣原体感染的流行病学现状 [J]. 中国性科学, 2016, 25(1): 95-97.
CHEN X, LIU Z H. Epidemiology of chlamydia trachomatis infection in genital tract[J]. Chin J Human Sex, 2016, 25(1): 95-97.
[5]WANG Y, KAHANE, S, CUTCLIFFE, L T, et al. Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector [J]. PLoS Pathog, 2011, 7(9): e1002258. DOI: 10.1371/journal.ppat.1002258.
[6]AGAISSE H, DERR I. trachomatis cloning vector and the generation of C. trachomatis strains expressing fluorescent proteins under the control of a C. trachomatis promoter [J]. PLoS One, 2013, 8(2): e57090.DOI: 10.1371/journal.pone.0057090.
[7]CONG Y, GAO L, ZHANG Y, et al. Quantifying promoter activity during the developmental cycle of Chlamydia trachomatis [J]. Sci Rep, 2016, 6: 27244. DOI: 10.1038/srep27244.
[8]ZHANG Y, XIAN Y, GAO L, et al. novel detection strategy to rapidly evaluate the efficacy of antichlamydial agents [J]. Antimicrob Agents Chemother, 2017, 61(2):e0220216. DOI: 10.1128/AAC.0220216.
[9]HORNER P. The case for further treatment studies of uncomplicated genital Chlamydia trachomatis infection [J]. Sex Transm Infect, 2006, 82(4):340. DOI: 10.1136/sti.2005.019158.
[10]KONG FY, HOCKING JS. Treatment challenges for urogenital and anorectal Chlamydia trachomatis [J]. BMC Infect Dis, 2015, 29(15):293. DOI: 10.1186/s1287901510309.
[11]WANG S A, PAPP J R, STAMM W E, et al. Evaluation of antimicrobial resistance and treatment failures for Chlamydia trachomatis: a meeting report [J]. J Infect Dis, 2005, 191(6):917. DOI: 10.1086/428290
[12]李建军, 涂裕英, 佟菊贞, 等. 瞿麦等12味利水中药体外抗泌尿生殖道沙眼衣原体活性检测 [J]. 中国中药杂志, 2000, 25(10) : 628.
LI J J, TU Y Y, TONG J Z, et al. Inhibitory Activity of Diathus superbus L .and 11 Kinds of Diuretic Traditional Chinese Medicines for Urogenital Chlamydia Trachomatis in Vitro [J]. China J  Chin Materia Med, 2000, 25(10) : 628.
[13]王千秋, 张怀亮, 赖伟红, 等.中药对沙眼衣原体和单纯疱疹病毒作用的筛选 [J]. 中国艾滋病性病, 2004, 10(4) : 278.
WANG Q Q, ZHANG H L, LAI W H, et al. In vitro inhibitive effects of 28 chinese herbs on chlamydia trachomatis and herpes simplex virus [J]. Chin J AIDS/STD, 2004, 10(4) : 278.
[14]任献青, 鲁静, 孟祥乐, 等. 雷公藤红素药理作用最新研究进展 [J].中华中医药杂志, 2013, 28 (9): 2679.
REN X Q, LU J, MENG X L, et al. Recent progress on pharmacological effects of celastrol [J]. China J Trad Chin Med Pharm, 2013, 28 (9): 2679.
[15]王军政, 冯锋, 徐明婧, 等. 黄芩素衍生物构效关系研究进展 [J].药学进展, 2008, 32 (6): 241.
WANG J Z, FENG F, XU M J, et al. Progress in research on structure activity relationship of Baicalein derivatives [J]. Prog Pharmaceut Sci, 2008, 32 (6): 241.
[16]KISSINGER PJ, WHITE S, MANHART LE, et al. Azithromycin treatment failure for Chlamydia trachomatis among heterosexual men with nongonococcal urethritis [J]. Sex Transm Dis, 2016, 43: 599-602. DOI: 10.1097/OLQ.0000000000000489.
[17]王洋, 项荣武, 田百会, 等. Bliss法四种模型计算半数反应量和治疗指数的差异探究 [J]. 沈阳药科大学学报, 2015, 32(6): 463.
WANG Y, XIANG R W, TIAN B H, et al. The differences of the Bliss four models in calculating the median reaction dose and the therapeutic index [J]. J Shenyang Pharmaceut Univ, 2015, 32(6): 463.
[18]KHOSLA P K, NEERAJ V I, GUPTA S K, et al. Berberine, a potential drug for trachoma [J]. Rev Int Trach Pathol Ocul Trop Subtrop Sante Publique 1992, 69:147-165.
[19]胡诚毅, 莫志贤. 黄连素的药理作用及机制研究进展 [J]. 中国实验方剂学杂志,2017,23(20): 213219.
HU C Y, MO Z X. Research progress on pharmacological actions and mechanism of berberine[J]. Chin J Exp Tradit Med Formul, 2017, 23(20): 213-s219.
[20]MA L, ZHANG LJ, WANG BB, et al. Berberine inhibits Chlamydia pneumoniae infectioninduced vascular smooth muscle cell migration through downregulating MMP3 and MMP9 via PI3K [J]. Eur J Pharmacol. 2015, 755: 102-109. DOI: 10.1016/j.ejphar.2015.02.039.
[21]李梦. 小檗碱的肠道菌群生物转化研究[D].上海: 上海交通大学,2014.
LI M. Biotransform of berberine by gut microbiota [D]. Shanghai: Shanghai Jiaotong University, 2014.
[22]MAO L, CHEN Q, gong K, et al. Berberine decelerates glucose metabolism via suppression of mTORdependent HIF1α protein synthesis in colon cancer cells [J]. Oncol Rep, 2018, 3 9(5): 2436-2442. DOI: 10.3892/or.2018.6318.
[23]WANG H, LI K, MA L, et al. Berberine inhibits enterovirus 71 replication by downregulating the MEK/ERK signaling pathway and autophagy [J]. Virol J, 2017, 14(1): 2. DOI: 10.1186/s1298501606744.
[24]ORTIZ L M, LOMBARDI P, TILLHON M, et al. Berberine, an epiphany against cancer[J]. Molecules, 2014, 19(8): 12349-12367. DOI: 10.3390/molecules190812349.
[25]SHARMA M, RUDEL T. Apoptosis resistance in Chlamydiainfected cells: a fate worse than death[J]. FEMS Immunol Med Microbiol, 2009, 55(2): 154-161. DOI: 10.1111/j.1574695X.2008.00515.x.
[26]OLIVE AJ, HAFF MG, EMANUELE MJ, et al. Chlamydia trachomatisinduced alterations in the host cell proteome are required for intracellular growth[J]. Cell Host Microbe, 2014, 15(1): 113-124. DOI: 10.1016/j.chom.2013.12.009.
[27]ALZEER M A, XAVIER A, ABU L M, et al. Chlamydia trachomatis prevents apoptosis via activation of PDPK1MYC and enhanced mitochondrial binding of hexokinase II[J]. Ebiomedicine, 2017, 23:100-110. DOI:  10.1016/j.ebiom.2017.08.005.

更新日期/Last Update: 2018-07-30