[1]杨涛,周代君,王淞,等.氧化石墨烯促进HaCaT细胞迁移及初步机制研究[J].第三军医大学学报,2018,40(10):889-897.
 YANG Tao,ZHOU Daijun,WANG Song,et al.Effect of graphene oxide in promoting HaCaT cell migration in vitro and possible mechanisms[J].J Third Mil Med Univ,2018,40(10):889-897.
点击复制

氧化石墨烯促进HaCaT细胞迁移及初步机制研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第10期
页码:
889-897
栏目:
基础医学
出版日期:
2018-05-30

文章信息/Info

Title:
Effect of graphene oxide in promoting HaCaT cell migration in vitro and possible mechanisms
作者:
杨涛周代君王淞王颖胡晓红张小容贺伟峰夏合生邢孟秋吴军罗高兴
陆军军医大学(第三军医大学)第一附属医院全军烧伤研究所,创伤、烧伤与复合伤国家重点实验室;四川大学高分子研究所,高分子材料工程国家重点实验室;MB R3T 2N2加拿大 温哥华,曼尼托巴大学和曼尼托巴儿童健康研究所,机械工程、生物化学和医学遗传学系
Author(s):
YANG Tao ZHOU Daijun WANG Song WANG Ying HU Xiaohong ZHANG Xiaorong HE Weifeng XIA Hesheng XING Malcol WU Jun LUO Gaoxing

State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038; State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan Province, 610064, China; Department of Mechanical Engineering, Biochemistry and Medical Genetics, University of Manitoba, and Manitoba Institute of Child Health, Winnipeg, MB R3T 2N2, Canada

关键词:
氧化石墨烯细胞增殖细胞迁移分析肌动蛋白粘着斑蛋白浓度依赖
Keywords:
graphene oxide cell migration cell viability F-actin vinculin concentration-dependent
分类号:
R318.08;R322.99;R329.28
文献标志码:
A
摘要:

目的    观察氧化石墨烯(grapheneoxide,GO)对人表皮细胞株HaCaT细胞迁移的影响,初步探讨其可能机制。方法     将HaCaT细胞分别应用GO终浓度为0、0.001、0.01、0.1、1.0、10.0 μg/mL的RPMI1640细胞培养液培养,在培养的不同时相点,应用CCK-8法检测细胞活性,蛋白印迹法检测PCNA表达。采用划痕实验检测细胞迁移情况,激光共聚焦显微镜观察细胞骨架改变,蛋白质印迹法检测细胞F-actin、Vinculin的表达。结果    (1)低浓度GO对HaCaT细胞增殖无影响,当GO浓度高于1.0 μg/mL时则具有明显的毒性作用。10.0 μg/mL GO可明显抑制细胞PCNA表达(P<0.05)。(2)划痕实验结果显示:低浓度GO可促进HaCaT细胞迁移,其中以0.01 μg/mL浓度效果最明显,在划痕后 24 h,该组细胞迁移面积比对照组增加35.33% (P<0.01)。(3)激光共聚焦显微镜观察发现,0.01 μg/mL GO刺激后,细胞纤毛明显增多,胞内应力性纤维增粗。而其1.0 μg/mL组细胞变小、变圆。(4)蛋白印迹法检测结果显示:0.01 μg/mL GO刺激后F-actin表达增加(P<0.05),而1.0 μg/mL作用后F-actin表达却明显低于对照组。GO能促进Vinculin表达,但仅当GO浓度高于0.1 μg/mL后差异才有统计学意义。结论    特定浓度的GO可促进HaCaT细胞迁移,可能与其影响细胞骨架及F-actin、Vinculin表达有关。

Abstract:

Objective    To investigate the effect of graphene oxide (GO) on the migration of human epidermal cell line (HaCaT cells) and explore the possible mechanisms. Methods    HaCaT cells were cultured in RPMI1640 media containing different concentrations of GO for 24~72 h, and the changes in cell viability and proliferation were examined using the cell counting kit8 (CCK8) assay. The changes in cell migration were assessed in a cell scratch model. The cytoskeletons of the treated cells were observed using confocal laser scanning microscope (CLSM), and the expression levels of proliferating cell nuclear antigen (PCNA), Factin and vinculin after GO treatment were detected using Western blotting. Results    Compared with the control cells, the cells exposed to low concentrations of GO for 24 h exhibited no significant changes in cell viability, while GO at concentrations above 1.0  μg/mL caused obvious cytotoxicity (P<0.01), and treatment with 10.0  μg/mL GO for 24 h resulted in significantly decreased PCNA expression in the cells (P<0.05). Scratch wound assay showed that GO at low concentrations was capable of promoting the migration of HaCaT cells, and the effect was the strongest at 0.01 μg/mL, which significantly increased the cell migration rate by 35.33% at 24 h (P<0.01); GO at 1.0 μg/mL obviously inhibited the cell migration (P<0.01). CLSM demonstrated an obviously increased number of cell cilia and thickened cell stress fibers in cells exposed to 0.01 μg/mL GO. Incubation of the cells with 0.01 μg/mL GO significantly increased the expression level of Factin, while 1.0 μg/mL GO significantly suppressed F-actin expression (P<0.05). GO also enhanced the expression of vinculin in the cells, and the changes were statistically significant when GO concentration was above 0.1  μg/mL. Conclusion    GO within a defined concentration range can significantly promote the migration of HaCaT cells, the mechanism of which may involve the regulation of F-actin and vinculin expressions and cytoskeleton rearrangement.

参考文献/References:

[1]HSU Y C, LI L, FUCHS E. Emerging interactions between skin stem cells and their niches[J]. Nat Med, 2014, 20(8): 847-856. DOI: 10.1038/nm.3643.
[2]KIRBY G T, MILLS S J, COWIN A J, et al. Stem cells for cutaneous wound healing[J]. Biomed Res Int, 2015, 2015: 285869.DOI: 10.1155/2015/285869.
[3]GUO S, DIPIETRO L A. Factors affecting wound healing[J]. J Dent Res, 2010, 89(3): 219-229. DOI: 10.1177/0022034509359125.
[4]NOBES C D, HALL A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia[J]. Cell, 1995, 81(1): 53-62. DOI: 10.1016/0092-8674(95)90370-4.
[5]ARTHUR W T, NOREN N K, BURRIDGE K. Regulation of Rho family GTPases by cell-cell and cellmatrix adhesion[J]. Biol Res, 2002, 35(2): 239-246. DOI: 10.4067/S0716-97602002000200016.
[6]LEWIS A K, BRIDGMAN P C. Nerve growth cone lamellipodia contain two populations of actin laments that differ in organization and polarity[J]. J Cell Biology, 1992, 119(5): 1219-1243. DOI: 10.1083/jcb.119.5.1219.
[7]LE CLAINCHE C, CARLIER M F. Regulation of actin assembly associated with protrusion and adhesion in cell migration[J].Physiol Rev, 2008, 88(2): 489-513. DOI: 10.1152/physrev.00021.2007.
[8]FRITZ G, JUST I, KAINA B. Rho GTPases are overexpressed in human tumors[J].Int J Cancer, 1999, 81(5): 682-687.
[9]ZHU Y, MURALI S, CAI W, et al. Graphene and grapheme oxide: synthesis, properties, and applications[J]. Adv Mater, 2010, 22(35): 3906-3924. DOI: 10.1002/adma.201001068.
[10]STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565. DOI: 10.1016/j.carbon.2007.02.034.
[11]LERF A, HE H Y, FORSTER M, et al. Structure of graphite oxide revisited[J]. J Phys Chem B, 1998, 102(23): 4477-4482. DOI: 10.1021/jp9731821.
[12]NAYAK T R, ANDERSEN H, MAKAM V S, et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells[J]. ACS Nano, 2011, 5(6): 4670-4678. DOI: 10.1021/nn200500h.
[13]YANG K, LEE J, LEE J S, et al. Graphene oxide hierarchical patterns for the derivation of electrophysiologically functional neuron-like cells from human neural stem cells[J]. ACS Appl Mater Interfaces, 2016, 8(28): 17763-17774. DOI: 10.1021/acsami.6b01804.
[14]AHADIAN S, ZHOU Y, YAMADA S, et al. Graphene induces spontaneous cardiac differentiation in embryoid bodies[J]. Nanoscale, 2016, 8(13): 70757084. DOI: 10.1039/c5nr07059g.
[15]LEE J H, SHIN Y C, JIN O S, et al. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells[J]. Nanoscale, 2015, 7(27): 11642-11651. DOI: 10.1039/c5nr01580d.
[16]CHEN G Y, PANG D W, HWANG S M, et al. A graphene-based platform for induced pluripotent stem cells culture and differentiation[J]. Biomaterials, 2012, 33(2): 418-427.DOI: 10.1016/j.biomaterials.2011.09.071.
[17]GIBBS S. In vitro irritation models and immune reactions[J]. Skin Pharmacol Physiol, 2009, 22(2): 103-113. DOI: 10.1159/000178869.
[18]FRYE M, GARDNER C, LI E R, et al. Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment[J]. Development, 2003, 130(12): 2793-2808. DOI: 10.1242/dev.00462.
[19]JIANG Z Y, SONG Q, TANG M L, et al. Enhanced migration of neural stem cells by microglia grown on a three-dimensional graphene scaffold[J]. ACS Appl Mater Interfaces, 2016, 8(38): 25069-25077. DOI: 10.1021/acsami.6b06780.
[20]PELIN M, FUSCO L, LE-N V, et al. Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes[J]. Sci Rep, 2017, 7: 40572. DOI: 10.1038/srep40572.
[21]AKHAVAN O, GHADERI E, AKHAVAN A. Sizedependent genotoxicity of grapheme nanoplatelets in human stem cells[J]. Biomaterials, 2012, 33(32): 8017-8025. DOI: 10.1016/j.biomaterials.2012.07.040.
[22]WANG J, MANGA K K, BAO Q, et al. High-yield synthesis of few-layer grapheme flakes through electrochemical expansion of graphite in propylene carbonate electrolyte[J]. J Am Chem Soc, 2011, 133(23): 8888-8891. DOI: 10.1021/ja203725d.
[23]MONTEIRORIVIERE N A, INMAN A O. Challenges for assessing carbon nanomaterial toxicity to the skin[J]. Carbon, 2006, 44(6): 1070-1078. DOI: 10.1016/j.carbon.2005.11.004.
[24]WICK P, LOUW-GAUME A E, KUCKI M, et al. Classification framework for graphenebased materials[J]. Angew Chem Int Ed Engl, 2014, 53(30): 7714-7718. DOI: 10.1002/anie.201403335.
[25]LIAO K H, LIN Y S, MACOSKO C W, et al. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts[J]. ACS Appl Mater Interfaces, 2011, 3(7): 2607-2615. DOI: 10.1021/am200428v.
[26]RYOO S R, KIM Y K, KIM M H, et al. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies[J]. ACS Nano, 2010, 4(11): 6587-6598. DOI: 10.1021/nn1018279.
[27]JAWORSKI S, SAWOSZ E, KUTWIN M, et al. In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma[J]. Int J Nanomedicine, 2015, 10: 1585-1596.DOI: 10.2147/IJN.S77591.
[28]ZHANG H, PENG C, YANG J, et al. Uniform ultrasmall graphene oxide nanosheets with low cytotoxicity and high cellular uptake[J]. ACS Appl Mater Interfaces, 2013, 5(5): 1761-1767. DOI: 10.1021/am303005j.
[29]CHANG Y, YANG S T, LIU J H, et al. In vitro toxicity evaluation of graphene oxide on A549 cells[J]. Toxicol Lett, 2011, 200(3): 201-210. DOI: 10.1016/j.toxlet.2010.11.016.
[30]DAS S, SINGH S, SINGH V, et al. Oxygenated functional group density on grapheme oxide: its effect on cell toxicity[J]. Particle &Particle Systems Characterization, 2013, 30(2): 148-157. DOI: 10.1002/ppsc.201200066.
[31]MUKHERJEE S, SRIRAM P, BARUI A K, et al. Graphene oxides show angiogenic properties[J]. Adv Healthc Mater, 2015, 4(11): 1722-1732.DOI: 10.1002/adhm.201500155.
[32]ZHOU H, ZHANG B, ZHENG J, et al. The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration[J]. Biomaterials, 2014, 35(5): 1597-1607. DOI: 10.1016/j.biomaterials.2013.11.020.
[33]TIAN X, YANG Z, DUAN G, et al. Graphene oxide nanosheets retard cellular migration via disruption of actin cytoskeleton[J]. Small, 2017, 13(3): 1602133. DOI: 10.1002/smll.201602133.
[34]BAKOLITSA C, COHEN D M, BANKSTON L A, et al. Structural basis for vinculin activation at sites of cell adhesion[J]. Nature, 2004, 430(6999): 583-586. DOI: 10.1038/nature02610.

相似文献/References:

[1]周坤,杨辉,周伟,等.药物阻断mGlu3受体通路对脑胶质瘤干细胞增殖与分化的影响[J].第三军医大学学报,2012,34(17):1701.
 Zhou Kun,Yang Hui,Zhou Wei,et al.Effect of drug blockade of type-3 metabotropic glutamate receptor on proliferation and differentiation in glioma stem cells[J].J Third Mil Med Univ,2012,34(10):1701.
[2]林力,邓碧,寿铸,等.硫链丝菌肽对人喉癌Hep-2细胞生长及FoxM1表达的影响[J].第三军医大学学报,2012,34(20):2086.
 Lin Li,Deng Bi,Shou Zhu,et al.Effect of thiostrepton on proliferation and FoxM1 expression in human laryngocarcinoma Hep-2 cell line[J].J Third Mil Med Univ,2012,34(10):2086.
[3]王恒,王勇,江晓霁,等.莪术醇通过JAK3/STAT信号途径抑制Jurkat细胞增殖[J].第三军医大学学报,2013,35(05):408.
 Wang Heng,Wang Yong,Jiang Xiaoji,et al.Proliferation-inhibiting effect of curcumol on human T-cell leukemia cell line Jurkat via blocking JAK3/STAT pathway[J].J Third Mil Med Univ,2013,35(10):408.
[4]邵新宏,于游,张才全.miR-34a靶向调控NOTCH1基因对SW480细胞增殖的影响[J].第三军医大学学报,2012,34(22):2297.
 Shao Xinhong,Yu You,Zhang Caiquan.Inhibitory effects of miR-34a on NOTCH1 gene expression and SW480 cell proliferation[J].J Third Mil Med Univ,2012,34(10):2297.
[5]倪振洪,王滨,丁雯,等.左旋棉酚通过ERK通路诱导Daudi细胞发生自噬及意义[J].第三军医大学学报,2012,34(23):2384.
 Ni Zhenhong,Wang Bin,Ding Wen,et al.(-)-gossypol induces autophagy in Daudi cells through ERK signal pathway[J].J Third Mil Med Univ,2012,34(10):2384.
[6]赵亮,李静,魏强,等.人PGI基因siRNA慢病毒质粒的构建及对白血病细胞增殖的影响[J].第三军医大学学报,2013,35(01):20.
 Zhao Liang,Li Jing,Wei Qiang,et al.Construction of a lentiviral vector expressing human phosphoglucose isomerase gene siRNA and its influence on leukemia cell proliferation[J].J Third Mil Med Univ,2013,35(10):20.
[7]郑英如,李力,刘宝英,等.人可溶性增殖诱导配体促HeLa细胞增殖作用的研究[J].第三军医大学学报,2007,29(20):1951.
 ZHENG Ying-ru,LI Li,LIU Bao-ying,et al.Soluble a proliferation-induced ligand promotes proliferation of HeLa cells[J].J Third Mil Med Univ,2007,29(10):1951.
[8]夏珊,李世荣,刘剑毅,等.大黄素对人增生性瘢痕成纤维细胞的增殖抑制及细胞内游离Ca2+的作用[J].第三军医大学学报,2007,29(20):1982.
 XIA Shan,LI Shi-rong,LIU Jian-yi,et al.Effect of emodin on proliferation and intracellular free calcium of hypertrophic scar fibroblasts in vitro[J].J Third Mil Med Univ,2007,29(10):1982.
[9]左国伟,何焕玲,李星星,等.腺病毒介导BMP-2和BMP-6对人骨肉瘤细胞株MG63和U2OS的作用研究[J].第三军医大学学报,2007,29(18):1768.
 ZUO Guo-wei,HE Huan-ling,LI Xing-xing,et al.Effects of recombinant BMP-2 and BMP-6 adenoviruses on human osteosarcoma cell line MG63 and U2OS[J].J Third Mil Med Univ,2007,29(10):1768.
[10]冉擘力,何国祥,王耿,等.p27基因对血管平滑肌细胞中连接蛋白43表达的影响[J].第三军医大学学报,2008,30(05):424.
 RAN Bo-li,HE Guo-xiang,WANG Geng,et al.Effect of p27 gene on expression of connexin43 in vascular smooth muscle cells[J].J Third Mil Med Univ,2008,30(10):424.

更新日期/Last Update: 2018-05-30