[1]唐鹏程,朱英,赵敏珠,等.肘关节有限元模型模拟碰撞损伤的生物力学特性分析[J].第三军医大学学报,2018,40(07):596-602.
 TANG Pengcheng,ZHU Yin,ZHAO Minzhu,et al.Establishment of 3-D finite element model of elbow joint and its application for analysis of impact injury [J].J Third Mil Med Univ,2018,40(07):596-602.
点击复制

肘关节有限元模型模拟碰撞损伤的生物力学特性分析(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第07期
页码:
596-602
栏目:
基础医学
出版日期:
2018-04-15

文章信息/Info

Title:
Establishment of 3-D finite element model of elbow joint and its application for analysis of impact injury
 
作者:
唐鹏程朱英赵敏珠代亚磊张丽李红卫李剑波
重庆医科大学:基础医学院法医学教研室,重庆市刑事侦查工程技术研究中心;重庆市公安局刑警总队技术处
Author(s):
TANG Pengcheng ZHU Yin ZHAO Minzhu DAI Yalei ZHANG Li LI Hongwei LI Jianbo

Department of Forensic Medicine, Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing Medical University, Chongqing, 400016; Technical Department of Interpol Corps, Chongqing Police Bureau, Chongqing, 400021, China

关键词:
肘关节有限元分析损伤生物力学
Keywords:
elbow joint finite element analysis damage biomechanics
分类号:
R319; R322.72; R642
文献标志码:
A
摘要:

目的     利用有限元法建立肘关节的三维有限元模型,动态模拟肘关节以不同角度撞击地面,分析肘关节的生物力学特性。方法    选取1名健康青年男性志愿者,肘关节屈曲90°行CT扫描,应用Mimics、Geomagic、UG、Hypermesh等软件对所得数据进行三维重建,建立肘关节的三维有限元模型;在Abaqus软件中模拟肘关节以不同角度(前臂与地面呈30°、60°、90°)撞击地面时,计算骨皮质破裂的临界速度及显著破裂时的速度,分析应力传导及其大小、分布等的变化规律。 结果    肘关节屈曲90°状态发生正面碰撞时应力传导主要集中在肱骨髁、肱骨滑车及尺骨鹰嘴等部位,而桡骨头应力传导较小;当肘关节与地面撞击(前臂与地面分别呈30°、60°、90°)时,骨皮质破裂临界速度分别为11.4、9.3、13.8 m/s;前臂与地面分别呈30°、60°撞击,撞击速度分别达15.0、13.0 m/s时,尺骨鹰嘴呈粉碎性骨折;前臂与地面呈90°撞击,撞击速度达18.0 m/s时,肱骨远端呈明显横行骨折。 结论     应用有限元建模分析软件构建的人体肘关节有限元模型可用于外力作用下肘关节损伤机制的研究,也可用于肘关节损伤时暴力的大小、速度、方向的推断

Abstract:

Objective   To establish a 3-D finite element model (FEM) of elbow joint, and analyze the biomechanical changes of the elbow joint in impact injury by dynamical simulation of elbow joint to impact the ground at different angels. Methods     The finite element model of the elbow joint was established based on CT images of a young health male with his elbow joint bent at 90°, with aid of Mimics, Geomagic, UG and other softwares. Abaqus and Hypermesh softwares were used to simulate the injuries of the elbow joint impacting the ground at different angles (the angle of the forearm and the ground were 30°, 60° and 90°, respectively). The critical velocities of cortical bone fracture and obvious fracture were calculated, and the patterns of conduction, intensity and distribution of the stress force were analyzed during impact process. Results      When the elbow joint bent at 90° impacted the ground frontally, the conduction of the impact stress mainly concentrated in the humerus condyle, humerus trochlear and olecranon, but little in the radius. The critical velocities of cortical rupture were 11.4, 9.3, and 13.8 m/s respectively, when the angulations were 30°, 60°, and 90°. When the angulations were 30° and 60°, the impact velocities speeded up to 15.0 and 13.0 m/s, the olecranon had obvious fracture. Obvious transverse fracture was found in the distal humerus at the condition of angulations of 90° and velocity of 18.0 m/s.  Conclusion     The established FEM of elbow joint can be used in the biomechanical studies on mechanism of elbow injuries. It also provides new means to infer the intensity, velocity and direction of violence when the elbow joint is injured.

参考文献/References:

[1]MARTIN S, SANCHEZ E. Anatomy and biomechanics of the elbow ioint[J]. Semin Musculoskelet Radiol,2013, 17(5):429-436. DOI:10.1055/s00331361587.
[2]张培楠,贾永利,张鑫,等. 肘关节内侧副韧带断裂对肱桡关节影响的生物力学研究[J]. 中国骨与关节损伤杂志,2017,32(5):490-493.DOI:10.7531/j.issn.16729935.2017.05.012.
ZHANG P N, JIA Y L, ZHANG X, et al. Biodynamics research of effect of disruption of elbow joint medial collateral ligament on humeroradial joint[J]. Chin J Bone Joint Injury, 2017, 32(5): 490-493. DOI:10.7531/j.issn.16729935.2017.05.012.
[3]张军威,高石军,杨新明,等. 肘关节内侧副韧带前束损伤的生物力学研究[J]. 中国矫形外科杂志,2012,20(16):1480-1483. DOI:10.3977/j.issn.10058478.2012.16.12.
ZHANG J W, GAO S J, YANG X M, et al. The biomechanics research of anterior bundle in MCL injury of elbow joint[J]. Orthopedic J Chin, 2012, 20(16): 1480-1483. DOI:10.3977/j.issn.10058478.2012.16.12.
[4]WILLING R T, LALONE E A, SHANNON H, et al. Validation of a finite element model of the human elbow for determining cartilage contact mechanics[J]. J Biomech, 2013, 46 (10): 1767-1771. DOI:10.1016/j.jbiomech.2013.04.001.
[5]SUN J, YAN S, JIANG Y, et al. Finite element analysis of the valgus knee joint of an obese child[J]. Biomed Eng Online, 2016, 15 (2): 309-321.
[6]原芳,薛清华,刘伟强,等. 有限元法在脊柱生物力学应用中的新进展[J]. 医用生物力学,2013,28 (5):585-590.
YUAN F, XUE Q H, LIU W Q,et al. Recent advances about finite element applications in spine biomechanics[J]. J Med Biomech, 2013, 28(5): 585-590.
[7]唐北川,任先军,邹喜红.连续两节段颈椎hybrid手术的有限元法生物力学对比分析[J].第三军医大学学报,2015,37(8):809-815. DOI:10.16016/j.10005404.2014 11247.
TANG B C,REN X J,ZOU X H.Finite element analysis of biomechanical comparison of cervical hybrid surgery in continuous twolevel segments[J].J Third Mil Med Univ,2015,37(8):809-815. DOI:10.16016/j.10005404.201411247.
[8]李杰,王洪岗,尚进,等.经椎间孔腰椎椎间融合术植骨融合前后应力分布差异的有限元分析[J].第三军医大学学报,2015,37(14): 1449-1454. DOI:10.16016/j.10005404.201410189.
LI J,WANG H G,SHANG J,et al.Finite element analysis of stress distribution before and after segment fusion in transforaminal lumbar interbody fusion model[J].J Third Mil Med Univ,2015,37(14):1449-1454. DOI:10.16016/j.10005404. 201410189.
[9]DUPREY S, BRUYERE K, VERRIEST J P. Human shoulder response to side impacts: a finite element study[J]. Comput Methods Biomech Biomed Engin, 2007,10(5): 361-370. DOI:10.1080/10255840701463986.
[10]王以进,王介麟.骨科生物力学[M].北京:人民军医出版社,1989:310.
WANG Y J, WANG J L. Orthopaedic Biomechanics[M].Beijing: People’s Military Medical Press,1989:310.
[11]LAN C C, KUO C S, CHEN C H, et al. Finite element analysis of biomechanical behavior of whole thoracolumbar spine with ligamentous effect[J]. Changhua J Med, 2013, 11 (1): 26-41.
[12]CHENG L, HANNAFORD B. Finite element analysis for evaluating liver tissue damage due to mechanical compression[J]. J Biomech, 2015, 48 (6): 948-955. DOI:10.1016/j.jbiomech.2015.02.014.
[13]曾智. 成人肘关节及前臂三维有限元模型的建立及桡骨头应力传导分析[D]. 衡阳:南华大学,2014.
ZENG Z. The establishment of the threedimensional finite element model of the elbow and forearm in adult and the analysis of the stress conduction of the radial head[D]. Heng yang: University of South China, 2014.
[14]杨运平,徐达传, 甄明生,等. 桡骨头的应力传导作用及其临床意义[J]. 中华骨科杂志,2001, 21 (2):84-86.
YANG Y P, XU D C,ZHEN M S,et al. The stress conduction of the radial head and its clinical significance[J]. Chin J Orthop, 2001, 21 (2):84-86.
[15]张建新,田洪波,陈日齐. 成人桡骨头切除术后并发症的三维有限元分析[J]. 医用生物力学,2009,24(6):444-447.
ZHANG J X, TIAN H B, CHEN R Q. Threedimensional limited element analysis of the complication after resection of head of radius for adults[J]. J Med Biomech, 2009, 24(6): 444-447.
[16]谭军. 应用三维CT重建研究活体肘关节侧副韧带生物力学[D]. 苏州:苏州大学,2014.
TAN J. The study of the biomechanics of the lateral collateral ligament of the elbow joint by threedimensional CT reconstruction[D]. Suzhou: Soochow University, 2014.
[17]HAMEL A, LLARI M, PIERCECCHIMARTI M D, et al. Effects of fall conditions and biological variability on the mechanism of skull fractures caused by falls[J]. Int J Legal Med,2013, 127(1): 111-118. DOI:10.1007/s0041401106279.
[18]杨资洋,裘松波,刘煜,等. 人下颌骨撞击伤有限元模拟及生物力学研究[J]. 实用口腔医学杂志,2016,32(3):377-382. DOI:10.3969/j.issn.10013733.2016.03.017.
YANG Z Y, QIU S B, LIU Y, et al. Biomechanical study on the impact injure of human mandible by finite element method[J]. J Pract Stomatol, 2016, 32(3): 377-382. DOI:10.3969/j.issn.10013733.2016.03.017.
[19]杨运平,徐达传,许本柯,等. 肘关节副韧带的形态结构特点及功能分析[J]. 中华骨科杂志,2000,20(6):345-347.
YANG Y P,XU D C, XU B K,et al. Analysis of the morphological structure and function of the collateral ligament of the elbow joint[J]. Chin J Orthop, 2000,20(6):345-347.
[20]王友华,刘璠,王洪,等. 肘关节外侧副韧带应用解剖学研究[J]. 南通大学学报(医学版),2005,25(1):34-36. DOI:10.3969/j.issn.16747887.2005.01.011.
WANG Y H, LIU F, WANG H, et al. Study of radial collateral ligaments of elbow joint[J]. J Nantong Univ (Med Sci), 2005, 25(1): 34-36. DOI:10.3969/j.issn.16747887.2005.01.011.
[21]纪标,王友华,赵敦炎,等. 肘关节内侧副韧带的解剖、功能及生物力学的研究[J]. 南通大学学报(医学版),2006,26(2):97-99.DOI:10.3969/j.issn.16747887.2006.02.007.
JI B, WANG Y H, ZHAO D Y, et al. Study on anatomy, function and biomechanis of medical collateral accessary ligamtnes of elbow[J].J Nantong Univ (Med Sci), 2006, 26(2): 97-99. DOI:10.3969/j.issn.16747887.2006.02.007.
[22]MORREY B F, AN K N, STORMONT T J. Force transmission through the radial head[J]. J Bone Joint Surg Am,1988,70(2):250-256. DOI:10.2106/0000462319887 002000014. 

相似文献/References:

[1]钦斌,黄永火,欧阳羽,等.轴向应力作用下的舟骨有限元分析[J].第三军医大学学报,2010,32(11):1213.
 Qin Bin,Huang Yonghuo,Ouyang Yu,et al.Finite element analysis in scaphoid bone under action of axial stress[J].J Third Mil Med Univ,2010,32(07):1213.
[2]邬培慧,傅明,康焱,等.髋臼CE角及关节作用力方向的生物力学作用[J].第三军医大学学报,2011,33(11):1174.
 Wu Peihui,Fu Ming,Kang Yan,et al.Biomechanics of acetabular CE angle and direction of hip joint acting force[J].J Third Mil Med Univ,2011,33(07):1174.
[3]陈红莉,史洋,韩耀伦.两种修复方式对少量缺损的上中切牙应力的影响[J].第三军医大学学报,2016,38(03):280.
 Chen Hongli,Shi Yang,Han Yaolun.Effect of 2 different restorations on stress of maxillary central incisor with small defects[J].J Third Mil Med Univ,2016,38(07):280.
[4]刘益兵,黄楠楠,张珠玙,等.下颌第一磨牙在不同咬合接触受力下的有限元分析[J].第三军医大学学报,2018,40(20):1906.
 LIU Yibing,HUANG Nannan,ZHANG Zhuyu,et al.Finite element analysis of mandibular first molar under different conditions of occlusal contact[J].J Third Mil Med Univ,2018,40(07):1906.

更新日期/Last Update: 2018-04-10