[1]黄杨,张颖,王富友,等.含天然钙化层的骨软骨材料修复猪膝关节软骨缺损[J].第三军医大学学报,2018,40(04):307-315.
 HUANG Yang,ZHANG Ying,WANG Fuyou,et al.Decellularized bone scaffold retaining natural calcified cartilage zone for repairing osteochondral defects in mini-pigs [J].J Third Mil Med Univ,2018,40(04):307-315.
点击复制

含天然钙化层的骨软骨材料修复猪膝关节软骨缺损(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第04期
页码:
307-315
栏目:
基础医学
出版日期:
2018-02-28

文章信息/Info

Title:
Decellularized bone scaffold retaining natural calcified cartilage zone for repairing osteochondral defects in mini-pigs
 
作者:
黄杨张颖王富友曾伟南刘俊利杨柳
陆军军医大学(第三军医大学)第一附属医院关节外科中心
Author(s):
HUANG Yang ZHANG Ying WANG Fuyou ZENG Weinan LIU Junli YANG Liu

Center for Joint Surgery, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China

关键词:
组织工程钙化层软骨缺损骨软骨支架自体贵州小香猪
Keywords:
tissue engineering calcified cartilage zone osteochondral defects osteochondral scaffold autologous mini-pigs
分类号:
R-332;R318.08;R684
文献标志码:
A
摘要:

目的    构建含和不含天然钙化层的修复材料,比较两者在猪膝关节软骨缺损修复中的效果,探讨钙化层在骨软骨组织工程中的重要性。方法    选取普通实验猪膝关节骨,软骨通过Ⅱ型胶原水凝胶冻干技术和天然骨软骨脱细胞技术构建含有钙化层和无钙化层的骨软骨支架,以贵州小香猪自体骨髓间充质干细胞(bone marrow mesenchymal stem cells, BMSCs)为种子细胞,构建移植修复材料。30只小香猪按随机数字表法分为空白对照组、无钙化层组、含钙化层组(n=10)。双膝关节滑车骨软骨缺损造模,直径8 mm,深至软骨下骨,植入对应的修复材料。分别于12、24周取材,采用大体、体式显微镜观察,以及MRI检测缺损填充情况,HE染色、番红O-固绿染色,以及Ⅰ、Ⅱ型胶原蛋白免疫组化染色观察新生修复物的组织类别,O’Driscoll组织学评分评价修复效果。结果     各组术后24周修复效果较12周均有改善。大体和体式显微镜观察,24周空白对照组新生组织部分填充缺损,为纤维组织,软骨表面凹陷深大;无钙化层组移植物填充缺损,软骨表面凹陷;含钙化层组缺损填充较好,表面微凹陷,三层结构可见,与宿主组织整合佳。组织学观察提示空白对照组为纤维组织填充修复;无钙化层组为骨和纤维软骨修复,三层结构不明显;含钙化层组钙化层结构清晰,移植物与宿主整合,软骨表面微凹陷,透明软骨修复。O’Driscoll组织学评分,12、24周空白对照组分别为(3.80±0.83)、(5.50±0.52)分,无钙化层组分别为(10.30±0.63)、(14.20±0.68)分,含钙化层组分别为(15.10±0.58)、(18.80±0.87)分,各组评分差异均有统计学意义(P<0.01),含钙化层组评分最高。结论    含有天然钙化层的骨软骨支架,在猪骨软骨缺损修复中取得了很好的修复效果,明显优于无钙化层支架和空白对照,是今后软骨组织工程支架设计的重要参考。

Abstract:

Objective    To explore whether the calcified cartilage zone (CCZ) is essential for tissue-engineered bone scaffold for repairing osteochondral defect in mini-pigs. Methods    The bone scaffold materials were prepared by frozen-drying type Ⅱ collagen cross-linked with trephined on decellularized pig bone with or without natural CCZ. The autologous bone marrow stem cells (BMSCs) of mini-pigs were injected into the cartilage layer of the scaffold to prepare the tissue-engineered implants. Thirty mini-pigs were randomized equally into blank control group, non-CCZ group, and CCZ group, and in each pig, full-thickness osteochondral defects of 8 mm in diameter were created on both knees and repaired using the corresponding implants. At 12 and 24 weeks after the operation, the defects were assessed by general observation, magnetic resonance imaging (MRI), HE staining, safranin 0-fast green staining, type-Ⅰ, type-Ⅱ collagen immunohistochemical staining and O’Driscoll histological scores. Results    In each group, obvious improvement in cartilage defect repair was observed at 24 weeks after the operation as compared with that at 12 weeks. In the blank control group, the defect was partly repaired by fibrous tissue, and deep defects remained at 24 weeks; in non-CCZ group, the defect was moderately repaired by the implants with small defects in the cartilage; in CCZ group, the defect was nearly fully repaired by the implant, which was well integrated with the host tissue and clearly showed the threelayered structure. Histological observations showed that the defects was filled with fibrous tissue in the blank control group, by bone and fibrocartilage without an identifiable three-layered structure in non-CCZ group, and with bone and hyaline cartilage without distinct boundaries with the host tissue in CCZ group. The O’Driscoll scores in the blank control, non-CCZ, and CCZ groups were 3.8±0.83, 10.3±0.63, and 15.1±0.58 at 12 weeks, and were 5.5±0.52, 14.2±0.68, and 18.8±0.87 at 24 weeks, respectively, showing significant differences among the groups at both 12 weeks and 24 weeks after the operation (P<0.01). Conclusion    Compared with the scaffold without CCZ, the scaffold retaining natural CCZ achieves optimal repair of fullthickness osteochondral defects in minipigs, suggesting the importance of the CCZ in the design of tissueengineered cartilage scaffold.

参考文献/References:

[1]SAVAGEELLIOTT I, ROSS K A,SMYTH N A, et al. Osteochondral lesions of the talus: a current concepts review and evidencebased treatment paradigm[J]. Foot Ankle Spec, 2014. 7(5): 414-422. DOI:10.1177/1938640014543362.
[2]CHARALAMBOUS C P. Articular Cartilage. Part II: degeneration and osteoarthrosis, repair, regeneration, and transplantation[J]. Instr Course Lect, 2014, 47: 487-504.
[3]YASUI Y, WOLLSTEIN A, MURAWSKI C D, et al. Operative treatment for osteochondral lesions of the talus: biologics and ScaffoldBased Therapy[J]. Cartilage, 2017, 8(1): 42-49. DOI: 10.1177/1947603516644298.
[4]KRYCH A J, HARNLY H W, RODEO S A,et al. Activity levels are higher after osteochondral autograft transfer mosaicplasty than after microfracture for articular cartilage defects of the knee: a retr ospective comparative study[J]. J Bone Joint Surg Am Volume, 2012, 94(11): 971-978. DOI: 10.2106/JBJS.K.00815.
[5]ATHIVIRAHAM A, KODALI P, MINIACI A. Surgical treatment of osteochondral defects of the knee, knee surgery, with mosaicplasty technique[M]//Sports Injuries. Springer Berlin Heidelberg, 2013, 1-10.
[6]WANG F, YING Z, DUAN X, et al. Histomorphometric analysis of adult articular calcified cartilage zone[J]. J StructBiol, 2009, 168(3): 359-365. DOI: 10.1016/j.jsb.2009.08.010.
[7]SUN L, CHEN C, YIN L, et al. Probing the elasticity of calcified cartilage zone using nanoindentation[J]. J Biomater Tiss Eng, 2017, 7(7): 556-560. DOI: 10.1166/jbt.2017.1599.
[8]谭洪波, 崔运利, 王富友, 等. 脱细胞骨软骨支架复合自体骨髓间充质干细胞修复羊骨软骨缺损的研究[J]. 中华关节外科杂志:电子版, 2010,4(6): 37-40.
TAN H B, CUI Y L, WANG F Y, et al. Acellular osteochondral scaffold combined with autologous mscs repair goat osteochondral defects[J]. Chin J Joint Surg(Electr Vers), 2010, 4(6): 37-40.
[9]宁志刚, 王富友, 崔运利, 等. 可溶性猪软骨Ⅱ型胶原蛋白的提取与鉴定[J]. 重庆医学, 2011, 40(10): 954-955, 958. DOI: 10.3969/j.issn.16718348.2011.10.008.
NING Z G, WANG F Y, CUI Y L, et al. Isolation and identification of soluable collagen type Ⅱ from porcine articular cartilage[J]. Chongqing Med, 2011, 40(10): 954-955, 958. DOI: 10.3969/j.issn.16718348.2011.10.008.
[10]JACKSON D W, LALOR P A,ABERMAN H M, et al. Spontaneous repair of fullthickness defects of articular cartilage in a goat model. A preliminary study[J].J Bone Joint Surg Am, 2001, 83-A(1): 53-64. DOI: 10.2106/0000462320010100000008.
[11]NGUYEN L T, MIN Y K, LEE B T. Nanoparticle biphasic calcium phosphate loading on gelatinpectin scaffold for improved bone regeneration[J]. Tissue Eng Part A, 2015, 21(7-8): 1376-1387. DOI: 10.1089/ten.TEA.2014.0313.
[12]MARTINEZ R, FIGUEROA D, CALVO R, et al. Osteochodral lesion mouse model:an alternative for experimental work[J]. Rev Esp Cir Ortop Traumatol, 2015, 59(1): 9-13. DOI: 10.1016/j.recot.2014.06.006.
[13]GUZZARDELLA G A, MORRONE G, FINI M, et al. Histologic evaluation of the repair process of chondral and osteochondral lesions in a rabbit model[J]. J Appl Anim Res, 2000, 17(2): 217-224. DOI: 10.1080/09712119.2000.9706305.
[14]王冠,陈星星, 薛鑫,等.Ⅱ型胶原体外促进大鼠骨髓间充质干细胞向软骨细胞分化[J].第三军医大学学报, 2015, 37(9): 886-890. DOI: 10.16016/j.10005404.201412113.
WANG G, CHEN X X, XUE X, et al. Collagen Ⅱ promotes differentiation of rat bone marrow mesenchymal stem cells into chondrocytes in vitro[J].J Third Mil Med Univ, 2015, 37(9): 886-890. DOI: 10.16016/j.10005404.201412113.
[15]ZHANG Y, WANG F, TAN H, et al. Analysis of the mineral composition of the human calcified cartilage zone[J]. Int J Med Sci, 2012, 9(5): 353-360. DOI: 10.7150/ijms.4276.
[16]ARKILL K P, WINLOVE C P. Solute transport in the deep and calcified zones of articular cartilage[J]. Osteoarthr Cartilage, 2008, 16(6): 708-714. DOI: 10.1016/j.joca.2007.10.001.
[17]PAN J,ZHOU X,LI W, et al. In situ measurement of transport between subchondral bone and articular cartilage[J]. J Orthop Res, 2009, 27(10): 1347-1352. DOI: 10.1002/jor.20883.
[18]IMHOF H, SULZBACHER I,GRAMMP S, et al. Subchondral bone and cartilage disease: a rediscovered functional unit[J]. Invest Radiol, 2000, 35(10): 581-588.
[19]LANE L B,VILLACIN A,BULLOUGH P G. The vascularity and remodelling of subchondrial bone and calcified cartilage in adult human femoral and humeral heads. An age and stressrelated phenomenon[J]. J Bone Joint Surg Br, 1977, 59(3): 272-278.
[20]樊东力,张一鸣. 生物医用材料和组织工程技术在组织修复中的应用及进展[J]. 第三军医大学学报, 2015, 37(19): 1909-1913. DOI:10.16016/j.10005404.201507041.
FAN D L, ZHANG Y M. Application and progress of biomaterial and tissue engineering in tissue repair[J]. J Third Mil Med Univ, 2015, 37(19): 1909-1913. DOI:10.16016/j.10005404.201507041.

更新日期/Last Update: 2018-03-02