[1]胡坤,余加林,艾青,等.鼠诺如病毒在新生小鼠坏死性小肠结肠炎模型中的保护作用[J].第三军医大学学报,2018,40(10):898-903.
 HU Kun,YU Jialin,AI Qing,et al.Protective effect of murine norovirus on neonatal mouse model of necrotizing enterocolitis[J].J Third Mil Med Univ,2018,40(10):898-903.
点击复制

鼠诺如病毒在新生小鼠坏死性小肠结肠炎模型中的保护作用(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第10期
页码:
898-903
栏目:
基础医学
出版日期:
2018-05-30

文章信息/Info

Title:
Protective effect of murine norovirus on neonatal mouse model of necrotizing enterocolitis
作者:
胡坤余加林艾青程晨李秋平贺雨肖洒侯婷
重庆医科大学附属儿童医院新生儿科,儿童发育疾病研究教育部重点实验室,儿科学重庆市重点实验室,儿童发育重大疾病国家国际科技合作基地
Author(s):
HU Kun YU Jialin AI Qing CHENG Chen LI Qiuping HE Yu XIAO Sa HOU Ting

Department of Neonatology, Key Laboratory of Child Development and Disorders of Ministry of Education, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, the Children’s Hospital of Chongqing Medical University, Chongqing, 400014, China

关键词:
鼠诺如病毒坏死性小肠结肠炎3型天然淋巴样细胞白介素22
Keywords:
murine norovirus necrotizing enterocolitis type 3 innate lymphoid cells IL-22
分类号:
R-332;R373.9;R725.746.2
文献标志码:
A
摘要:

目的    探讨鼠诺如病毒(murine norovirus,MNV)在新生小鼠坏死性小肠结肠炎(necrotizing enterocolitis,NEC)模型中的作用,并分析其可能的作用机制。方法    将75只新生1 d的C57BL/6J小鼠按随机数字表法分为3组(n=25):正常对照组、给予PBS的NEC模型组(PBS+NEC组)和给予MNV干预的NEC模型组(MNV+NEC组)。正常对照组与母鼠同笼,不予任何处理;其余两组进行NEC动物模型构建。新生小鼠于生后1 d给予联合抗生素,连续灌胃10 d模拟无菌后,行NEC建模3 d,建模前后固定时间点称量体质量,第14天处死小鼠,HE染色观察回盲部肠组织病理学变化;qPCR法检测TLR-3、MDA-5、IL-6、IL-10、IL-1β、IL-22基因表达水平;流式细胞仪检测3型天然淋巴样细胞(type 3 innate lymphoid cells,ILC3)数量;ELISA法检测肠组织匀浆IL-10水平。结果    与正常对照组相比,PBS+NEC组、MNV+NEC组小鼠体质量明显降低(P<0.01),肠道损伤明显。与PBS+NEC组相比,MNV+NEC组体质量下降较少(P<0.05),肠上皮损伤也较轻;而在mRNA表达水平上,TLR-3(0.73±0.26 vs 0.62±0.40, P>0.05)、MDA-5(0.98±0.35 vs 0.67±0.39, P>0.05)、IL-10(1.22±0.36 vs 0.60±0.31,P<0.01)、IL-22(1.20±0.38 vs 0.65±0.22,P<0.05)基因表达增高,IL-6(0.75±0.33 vs 1.22 ±0.34, P<0.05)、IL-1β(0.39±0.2 vs 1.25±0.59,P<0.01)炎症因子基因表达降低;IL-10水平显著升高[(165.55±53.51) pg/mL vs (129.59±26.22) pg/mL,P<0.05],ILC3数量差异无统计学意义[(12.88±1.45)% vs (12.80±0.76)%, P>0.05],但其分泌的IL-22表达升高。结论    MNV在新生小鼠NEC模型肠道损伤中起保护作用,可能与MNV下调炎症因子IL-6、IL-1β,上调抑炎因子IL-10及分泌IL-22的ILC3的功能有关。

Abstract:

Objective    To investigate the role of murine norovirus (MNV) in neonatal mouse model of necrotizing enterocolitis (NEC), and to explore the possible mechanism. Methods    Seventy-five 1-day-old C57BL/6J mice were randomly divided into 3 groups (n=25 for each group): control group, NEC model with phosphate buffer saline treatment (PBS+NEC group), and MNV intervention group (MNV+NEC group). The neonatal mice in the control group were living with their mothers without submitting to stress. The mice in the NEC group were intragastrically infused with combined antibiotics for 10 consecutive days, while those from the intervention group were given MNV (2×106 pfu) on days 1, 2, 5, 6, 9 and 10. Then the animals of the 2 groups were induced to build the NEC model. The weights of mice were measured at a given time point before and after the model establishment. In 3 d later, all mice were sacrificed by decapitation, and the proximal intestines of ileocecal junction were harvested for pathological observation after HE staining. The mRNA expression levels of TLR-3, MDA-5, IL-6, IL-10, IL-1β and IL-22 were tested by quantitative real-time PCR. The counts of type 3 innate lymphoid cells (ILC3) were detected by flow cytometry. The levels of IL-10 in intestine tissues were evaluated by ELISA. Results    Compared with the control group, the weight of the other 2 groups was decreased (P<0.01) and the intestinal injury were obviously aggravated. However, the weight was decreased less fast (P<0.05), and the intestinal lesions were less severe in the MNV+NEC group than the PBS+NEC group. The MNV+NEC group had higher mRNA levels of TLR-3 (0.73±0.26 vs 0.62±0.40, P>0.05), MDA-5 (0.98±0.35 vs 0.67±0.39, P>0.05), IL10 (1.22±0.36 vs 0.60±0.31, P<0.01), and IL-22 (1.20±0.38 vs 0.65±0.22, P<0.05), while lower levels of IL-6 (0.75±0.33 vs 1.22 ±0.34, P<0.05) and IL-1β (0.39±0.2 vs 1.25±0.59, P<0.01). The content of IL-10 was increased in the intestine tissues (165.55±53.51 vs 129.59±26.22 pg/mL, P<0.05), but no such difference was seen in the count of ILC3 [(12.88±1.45)% vs (12.80±0.76)%, P>0.05], and the secretion of IL-22 was increased. Conclusion    MNV plays a protective role in intestinal injury in neonatal mice with NEC, which may be related with down-regulating IL-6 and IL-1β, up-regulating IL-10 and function of ILC3 with secreting IL-22 cytokines.
 

参考文献/References:

[1]FROST B L, MODI B P, JAKSIC T, et al. New medical and surgical insights into neonatal necrotizing enterocolitis: a review[J]. JAMA Pediatr, 2017, 171(1): 83-88. DOI: 10.1001/jamapediatrics.2016.2708.
[2]LIM J C, GOLDEN J M, FORD H R. Pathogenesis of neonatal necrotizing enterocolitis[J]. Pediatr Surg Int, 2015, 31(6): 509-518. DOI: 10.1007/s00383-015-3697-9.
[3]HACKAM D J, UPPERMAN J S, GRISHIN A, et al. Disordered enterocyte signaling and intestinal barrier dysfunction in the pathogenesis of necrotizing enterocolitis[J]. Semin Pediatr Surg, 2005, 14(1): 49-57. DOI: 10.1053/j.sempedsurg.2004.10.025.
[4]CADWELL K. Expanding the role of the virome: commensalism in the gut[J]. J Virol, 2015, 89(4): 1951-1953. DOI: 10.1128/JVI.02966-14.
[5]TH PAUT M, GRANDJEAN T, HOBER D, et al. Protective role of murine norovirus against Pseudomonas aeruginosa acute pneumonia[J]. Vet Res, 2015, 46: 91. DOI: 10.1186/s13567-015-0239-3.
[6]KERNBAUER E, DING Y, CADWELL K. An enteric virus can replace the beneficial function of commensal bacteria[J]. Nature, 2014, 516(7529): 94-98. DOI: 10.1038/nature13960.
[7]张昕, 涂波, 赵娟娟, 等. 3型天然淋巴细胞在HIV-1慢性感染中的免疫特征及其与疾病进展的关系研究[J]. 传染病信息, 2016, 29(3): 144-147.
ZHANG X, TU B, ZHAO J J, et al. Characteristics of group 3 innate lymphoid cells in chronic HIV-1 infection and their associations with disease progression[J]. Infect Dis Info, 2016, 29(3): 144-147. DOI: 10.3969/j.issn.1007-8134.2016.03.005.
[8]TANOUE T, ATARASHI K, HONDA K. Development and maintenance of intestinal regulatory T cells[J]. Nat Rev Immunol, 2016, 16(5): 295-309. DOI: 10.1038/nri.2016.36.
[9]QUINTANILLA H D, LIU Y, FATHEREE N Y, et al. Oral administration of surfactant protein-a reduces pathology in an experimental model of necrotizing enterocolitis[J]. J Pediatr Gastroenterol Nutr, 2015, 60(5): 613-620. DOI: 10.1097/MPG.0000000000000678.
[10]GON ALVES F L, SOARES L M, FIGUEIRA R L, et al. Evaluation of the expression of I-FABP and LFABP in a necrotizing enterocolitis model after the use of Lactobacillus acidophilus[J]. J Pediatr Surg, 2015, 50(4): 543-549. DOI:10.1016/j.jpedsurg.2014.07.007.
[11]THYOKA M, DE COPPI P, EATON S, et al. Advanced necrotizing enterocolitis part 1: mortality[J]. Zeitschrift fur Kinderchirurgie, 2012, 22(1): 8-12. DOI: 10.1055/s-0032-1306263.
[12]ECKBURG P B, BIK E M, BERNSTEIN C N, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308(5728): 1635-1638. DOI: 10.1126/science.1110591.
[13]PICKARD J M, MAURICE C F, KINNEBREW M A, et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness[J]. Nature, 2014, 514(7524): 638-641. DOI: 10.1038/nature13823.
[14]宋朝敏, 王红, 吴斌, 等. 新生鼠坏死性小肠结肠炎动物模型建立及评价[J]. 中国新生儿科杂志, 2007, 22(5): 280-284.
SONG C M, WANG H, WU B, et al. Establishment and evaluation of necrotizing enterocolitis model in neonatal rat[J]. Chin J Neonatol, 2007, 22(5): 280-284. DOI: 10.3969/j.issn.1673-6710.2007.05.008.
[15]NEWMAN K L, LEON J S. Norovirus immunology: Of mice and mechanisms[J]. Eur J Immunol, 2015, 45(10): 2742-2757. DOI: 10.1002/eji.201545512.
[16]ZHENG Y, VALDEZ P A, DANILENKO D M, et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens[J]. Nat Med, 2008, 14(3): 282-289. DOI: 10.1038/nm1720.
[17]HANASH A M, DUDAKOV J A, HUA G, et al. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease[J]. Immunity, 2012, 37(2): 339-350. DOI: 10.1016/j.immuni.2012.05.028.
[18]CELLA M, FUCHS A, VERMI W, et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity[J]. Nature, 2008, 457(7230): 722-725. DOI: 10.1038/nature07537.
[19]SONNENBERG G F, ARTIS D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation[J]. Nat Med, 2015, 21(7): 698-708. DOI: 10.1038/nm.3892.
[20]SONNENBERG G F, MONTICELLI L A, ALENGHAT T, et al. Innate lymphoid cells promote anatomical containment of lymphoidresident commensal bacteria[J]. Science, 2012, 336(6086): 1321-1325. DOI: 10.1126/science.1222551.
[21]MORTHA A, CHUDNOVSKIY A, HASHIMOTO D, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis[J]. Science, 2014, 343(6178): 1249288. DOI: 10.1126/science.1249288.

相似文献/References:

[1]郝静梅,韦红,张晓萍,等.产前使用地塞米松对坏死性小肠结肠炎新生鼠Toll样受体4表达的影响[J].第三军医大学学报,2012,34(02):145.
 Hao Jingmei,Wei Hong,Zhang Xiaoping,et al.Antenatal dexamethasone downregulates toll-like receptor 4 in neonatal rats with necrotizing enterocolitis[J].J Third Mil Med Univ,2012,34(10):145.
[2]唐毅,计晓娟,杨春江,等.超声诊断新生儿坏死性小肠结肠炎的临床价值[J].第三军医大学学报,2012,34(13):1347.
 Tang Yi,Ji Xiaojuan,Yang Chunjiang,et al.Ultrasonography in diagnosis of neonatal necrotizing enterocolitis[J].J Third Mil Med Univ,2012,34(10):1347.
[3]胡刘宏,余加林,艾青,等.细胞焦亡在新生儿坏死性小肠结肠炎中的致病作用[J].第三军医大学学报,2017,39(14):1440.
 HU Liuhong,YU Jialin,AI Qing,et al.Pathogenic role of cell pyroptosis in necrotizing enterocolitis in neonatal rats[J].J Third Mil Med Univ,2017,39(10):1440.

更新日期/Last Update: 2018-05-30