[1]赵媛,蔡亚兰,陈竹,等.PSD-95信号通路介导5-HT1A受体激动剂改善大鼠病理性攻击行为的调控机制[J].第三军医大学学报,2018,40(03):222-229.
 ZHAO Yuan,CAI Yalan,CHEN Zhu,et al.Mediated mechanism of PSD-95 signaling pathway in 5-HT1A receptor agonist reducing pathological aggression in rats[J].J Third Mil Med Univ,2018,40(03):222-229.
点击复制

PSD-95信号通路介导5-HT1A受体激动剂改善大鼠病理性攻击行为的调控机制(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第03期
页码:
222-229
栏目:
基础医学
出版日期:
2018-02-15

文章信息/Info

Title:
Mediated mechanism of PSD-95 signaling pathway in 5-HT1A receptor agonist reducing pathological aggression in rats
作者:
赵媛蔡亚兰陈竹屈远秦光成陈力学胡华
重庆医科大学附属第一医院:精神科,实验研究中心
Author(s):
ZHAO Yuan CAI Yalan CHEN Zhu QU Yuan QIN Guangcheng CHEN Lixue HU Hua

Department of Psychiatry, Experiments Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China

关键词:
病理性攻击行为5-HT1A受体激动剂PSD-95糖皮质激素
Keywords:
pathological aggressive behavior 5-HT1A receptor PSD-95 glucocorticoid
分类号:
R-332; R749.053; R966
文献标志码:
A
摘要:

目的     探索突触后致密物-95(postsynaptic density-95,PSD-95)信号通路是否参与并介导5-HT1A受体激动剂对大鼠病理性攻击行为的改善作用及调控机制。方法    将成功构建的24只病理性攻击大鼠按照抽签法分为4组,分别为8-OH-DPAT组、8-OH-DPAT+ZL006组、ZL006组、NaCl组,5-HT1A受体激动剂(8-OH-DPAT)以1 mg/kg每日腹腔注射并持续2周、PSD-95阻断剂(ZL006)以1 mg/kg每隔3天腹腔注射并持续2周。分别在给药前、给药1周后及给药2周后用居住-入侵实验测试大鼠病理性攻击行为变化,且每次居住-入侵实验前取大鼠眼眶后静脉血。取前额叶皮层、大鼠海马及下丘脑组织,用Western blot检测各脑区五羟色胺1A受体(serotonin 1A receptor,5HT1AR)、PSD-95及糖皮质激素受体(glucocorticoid receptor,GR)的表达,并采用ELISA试剂盒检测血清糖皮质激素含量。结果     8-OH-DPAT组大鼠攻击总数、攻击持续时间及攻击要害部位比在给药1周及2周后均有明显下降(P<0.05);8-OH-DPAT+ZL006组大鼠仅在给药1周后有降低(P<0.05)。Western blot检测结果显示8-OH-DPAT组、8-OH-DPAT+ZL006组前额叶皮层及海马5HT1A受体表达均高于其余两组(P<0.05);8OH-DPAT组大鼠前额叶皮层及海马PSD-95表达高于其余3组(P<0.05);且该组海马GR表达低于其余3组(P<0.05);各组大鼠下丘脑5-HT1AR、PSD-95表达差异无统计学意义(P>0.05)。ELISA结果显示:给药2周后8OH-DPAT组血清糖皮质激素浓度有明显上升(P<0.05),而其余3组在干预前后血清糖皮质激素无明显变化(P>0.05)。结论     PSD-95信号通路参与并介导了5-HT1A受体激动剂(8-OH-DPAT)对大鼠病理性攻击行为的改善作用,可能是通过对血清糖皮质激素的调控而发挥作用。

Abstract:

Objective     To explore the mediated effect of postsynaptic density-95 (PSD-95) signaling pathway on pathological aggression reduced by 5-HT1A receptor agonist in rats. Methods     Twentyfour pathological aggression rats were randomly assigned to 4 groups, that is, 8-OH-DPAT, 8-OH-DPAT+ZL006, ZL006, and NaCl groups. The rats were given corresponding treatment, 1 mg/kg 5-HT1A receptor agonist (8-OH-DPAT) i.p. for 2 consecutive weeks, and/or 1 mg/kg PSD-95 blockade (ZL006) i.p. every 3 days for 2 weeks. Resident-intruder test was taken respectively before intervention, in 1 and 2 weeks after intervention. After the test, blood sample was harvested from posterior orbital vein. Expression of serotonin 1A receptor (5HT1AR), PSD-95 and glucocorticoid receptor (GR) in prefrontal cortex, hippocampus and hypothalamus were measured by Western blotting. The serum level of glucocorticoid was tested by ELISA. Results     For the aggressive behaviors, attack times, duration of attack and ratio of attack to key parts of body were all decreased in the 8-OH-DPAT group in 1 and 2 weeks after treatment (P<0.05). While, the declines were only found in the 8-OH-DPAT+ZL006 group in 1 week after treatment (P<0.05). Western blotting showed that the expression of 5HT1AR in prefrontal cortex and hippocampus were significantly higher in the 8-OH-DPAT and 8-OH-DPAT+ZL006 groups than the other 2 groups (P<0.05), and in the 8-OH-DPAT group, the expression of PSD-95 in the prefrontal cortex and hippocampus was obviously higher, and that of GR in hippocampus was notably lower than the other 3 groups (P<0.05). There were no significant differences in the 5-HT1AR and PSD-95 levels in the hypothalamus among the 4 groups (P>0.05). The results of ELISA showed the serum glucocorticoid level was obviously increased in the 8-OH-DPAT group in 2 weeks after treatment (P<0.05), but no such increase was seen in the other 3 groups (P>0.05). Conclusion    PSD-95 signaling pathway takes part in and mediates the attenuation of pathological aggressive behaviors induced by 5-HT1A receptor agonist (8-OH-DPAT), which probably through its increasing effect on serum glucocorticoid.
 

参考文献/References:

[1]唐平. 病理性攻击行为的心理基础及其哲学本质[J]. 医学与哲学, 2004, 25(11): 65-67.
TANG P. Pathological aggressive behavior’s mental base and its philosophical essence[J]. Med Philos, 2004, 25(11): 65-67.
[2]HALLER J, KRUK M R. Normal and abnormal aggression: human disorders and novel laboratory models[J]. Neurosci Biobehav Rev, 2006, 30(3): 292-303. DOI:10.1016/j.neubiorev.2005.01.005.
[3]DAVIDSON R J, PUTNAM K M, LARSON C L. Dysfunction in the neural circuitry of emotion regulation—a possible prelude to violence[J]. Science, 2000, 289(5479): 591-594. DOI:10.1126/science.289.5479.591.
[4]LESCH K P, MERSCHDORF U. Impulsivity, aggression, and serotonin: a molecular psychobiological perspective[J]. Behavi Sci Law, 2000, 18(5): 581-604. DOI:10.1002/10990798(200010)18:5<581::aidbsl411>3.0.co;2l.
[5]STOHN J P, MARTINEZ M E, ZAFER M, et al. Increased aggression and lack of maternal behavior in Dio3deficient mice are associated with abnormalities in oxytocin and vasopressin systems[J]. Genes Brain Behav, 2017. [Epub ahead of print]. DOI:10.1111/gbb.12400.
[6]STEVENSON P A, RILLICH J. Adding up the oddsNitric oxide signaling underlies the decision to flee and postconflict depression of aggression[J]. Sci Adv, 2015, 1(2): e1500060-e1500060. DOI:10.1126/sciadv.1500060.
[7]DE BOER S F, KOOLHAAS J M. 5HT1A and 5HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis[J]. Eur J Pharmacol, 2005, 526(1/3): 125-139. DOI:10.1016/j.ejphar.2005.09.065.
[8]UKASIEWICZ S, BASIAK E, SZAFRANPILCH K, et al. Dopamine D2 and serotonin 5HT1A receptor interaction in the context of the effects of antipsychoticsin vitro studies[J]. J Neurochem, 2016, 137(4): 549-560. DOI:10.1111/jnc.13582.
[9]HEYDARI A, DAVOUDI S. The effect of sertraline and 8OHDPAT on the PTZ_induced seizure threshold: Role of the nitrergic system[J]. Seizure, 2017, 45: 119-124. DOI:10.1016/ j.seizure.2016.12.005.
[10]DOUCET M V, LEVINE H, DEV K K, et al. Smallmolecule inhibitors at the PSD95/nNOS interface have antidepressantlike properties in mice[J]. Neuropsychopharmacology, 2013, 38(8): 1575-1584. DOI:10.1038/npp.2013.57.
[11]SREJIC L R, HUTCHISON W D, AARTS M M. Uncoupling PSD95 interactions leads to rapid recovery of cortical function after focal stroke[J]. J Cereb Blood Flow Metab, 2013, 33(12): 1937-1943. DOI:10.1038/jcbfm.2013.153.
[12]HALLER J, HALSZ J, MIKICS E, et al. Chronic glucocorticoid deficiencyinduced abnormal aggression, autonomic hypoarousal, and social deficit in rats[J]. J Neuroendocrinol, 2004, 16(6): 550-557. DOI:10.1111/j.13652826.2004.01201.x.
[13]屈远. 病理性攻击大鼠模型构建及效果评估[D]. 重庆:重庆医科大学, 2012.
QU Y. Establish and effect evaluation of pathological aggression animal model[D]. Chongqing: Chongqing Medical University, 2012.
[14]HALLER J, HORVTH Z, BAKOS N. The effect of buspirone on normal and hypoarousaldriven abnormal aggression in rats[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2007, 31(1): 27-31. DOI:10.1016/j.pnpbp.2006.05.022.
[15]屈远,雷莉,秦光成, 等. 青春期病理性攻击动物模型的初步构建[J].中华行为医学与脑科学杂志, 2011, 20(7): 630-632. DOI:10.3760/cma.j.issn.16746554.2011.07.019.
QU Y, LEI L, QIN G C, et al. Preliminary establish of the puberty pathological aggression animal model[J]. Chin J Behavioral Med Brain Sci, 2011, 20(7): 630-632. DOI:10.3760/cma.j.issn.16746554.2011.07.019.
[16]BIBANCOS T, JARDIM D L, ANEAS I, et al. Social isolation and expression of serotonergic neurotransmissionrelated genes in several brain areas of male mice[J]. Genes Brain Behav, 2007, 6(6): 529-539. DOI:10.1111/j.1601183X.2006.00280.x.
[17]FONE K C, PORKESS M V. Behavioural and neurochemical effects of postweaning social isolation in rodentsrelevance to developmental neuropsychiatric disorders[J]. Neurosci Biobehav Rev, 2008, 32(6): 1087-1102. DOI:10.1016/j.neubiorev.2008.03.003.
[18]TAKAHASHI A, NAGAYASU K, NISHITANI N, et al. Control of intermale aggression by medial prefrontal cortex activation in the mouse[J]. PLoS ONE, 2014, 9(4): e94657. DOI:10.1371/journal.pone.0094657.
[19]MORI T, UZAWA N, IWASE Y, et al. Narcolepsylike sleep disturbance in orexin knockout mice are normalized by the 5HT1A receptor agonist 8OHDPAT[J]. Psychopharmacology (Berl), 2016, 233(12): 2343-2353. DOI:10.1007/s0021301642821.
[20]DABROWSKA J, BRYLINSKI M. Stereoselectivity of 8OHDPAT toward the serotonin 5HT1A receptor: biochemical and molecular modeling study[J]. Biochem Pharmacol, 2006, 72(4): 498-511. DOI:10.1016/j.bcp.2006.05.008.
[21]STEIN D J, MICZEK K A, LUCION A B, et al. Aggressionreducing effects of F15599, a novel selective 5HT1A receptor agonist, after microinjection into the ventral orbital prefrontal cortex, but not in infralimbic cortex in male mice[J]. Psychopharmacology (Berl), 2013, 230(3): 375-387. DOI:10.1007/s002130133164z.
[22]BESNARD S, MASS F, VERDAGUER M, et al. Time and doserelated effects of three 5HT receptor ligands on the genioglossus activity in anesthetized and conscious rats[J]. Schlaf Atmung, 2007, 11(4): 275-284. DOI:10.1007/s1132500701070.
[23]PILARCULLAR F, VIDAL R, DAZ , et al. Enhanced stress response in 5HT1AR overexpressing mice: altered HPA function and hippocampal longterm potentiation[J]. ACS Chem Neurosci, 2017,8(11):2393-2401. DOI:10.1021/acschemneuro.7b00156.
[24]STAMPER C E, HASSELL J E, KAPITZ A J, et al. Activation of 5HT1A receptors in the rat dorsomedial hypothalamus inhibits stressinduced activation of the hypothalamicpituitaryadrenal axis[J]. Stress, 2017, 20(2): 223-230. DOI:10.1080/10253890.2017.1301426.
[25]WANG H T, HAN F, SHI Y X. Activity of the 5HT1A receptor is involved in the alteration of glucocorticoid receptor in hippocampus and corticotropinreleasing factor in hypothalamus in SPS rats[J]. Int J Mol Med, 2009, 24(2): 227-231.
[26]ERDELJAN P, ANDREWS M H, MACDONALD J F, et al. Glucocorticoids and serotonin alter glucocorticoid receptor mRNA levels in fetal guineapig hippocampal neurons, in vitro[J]. Reprod Fertil Dev, 2005, 17(7): 743-749.
[27]ANACKER C, CATTANEO A, MUSAELYAN K, et al. Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis[J]. Proc Natl Acad Sci USA, 2013, 110(21): 8708-8713. DOI:10.1073/pnas.1300886110.
[28]SHARVIT A, SEGAL M, KEHAT O, et al. Differential modulation of synaptic plasticity and local circuit activity in the dentate gyrus and CA1 regions of the rat hippocampus by corticosterone[J]. Stress, 2015, 18(3): 319-327. DOI:10.3109/10253890.2015.1023789.
[29]KUNIISHI H, ICHISAKA S, MATSUDA S, et al. Chronic inactivation of the orbitofrontal cortex increases anxietylike behavior and impulsive aggression, but decreases depressionlike behavior in rats[J]. Front Behav Neurosci, 2016, 10:250. DOI:10.3389/fnbeh.2016.00250.
[30]MOGHA A, GUARIGLIA S R, DEBATA P R, et al. Serotonin 1A receptormediated signaling through ERK and PKCα is essential for normal synaptogenesis in neonatal mouse hippocampus[J]. Trans Psych, 2012, 2(1): e66. DOI:10.1038/tp.2011.58.
[31]雷莉, 张艳, 胡华, 等. 早年慢性应激对青春期大鼠攻击行为及下丘脑腹内侧核和前额皮质脑源性神经营养因子表达的影响[J]. 第三军医大学学报, 2013, 35(3): 233-236.
LEI L, ZHANG Y, HU H, et al. Effect of early chronic life stress on aggressive behavior and expression of brainderived neurotrophic factor in hypothalamus and prefrontal cortex in puberty rats[J]. J Thrid Mil Med Univ, 2013, 35(3): 233-236.
[32]张艳.早年慢性应激后青春期攻击大鼠认知功能及海马神经可塑性改变[D]. 重庆:重庆医科大学, 2014.
ZHANG Y.Changes of cognitive function and hippocampal plasticity in adolescent rats with chronic stress after puberty[D].Chongqing:Chongqing Medical University,2014.
[33]张艳, 雷莉, 胡华, 等. 早年慢性应激对青春期病理性攻击大鼠空间学习记忆及海马脑源性神经营养因子、5羟色胺的影响[J]. 第二军医大学学报, 2013, 34(10): 1065-1069. DOI:10.3724/SP.J.1008.2013.01065.
ZHANG Y, LEI L, HU H, et al. Effect of early life chronic stress on spatial learning and memory and hippocampus brainderived neurotrophic factor and 5HT in puberty pathological aggression rats[J]. J Second Mil Med Univ, 2013, 34(10): 1065-1069. DOI:10.3724/SP.J.1008.2013.01065.
[34]DUNN H A, CHAHAL H S, CAETANO F A, et al. PSD95 regulates CRFR1 localization, trafficking and βarrestin2 recruitment[J]. Cell Signal, 2016, 28(5): 531-540. DOI:10.1016/j.cellsig.2016.02.013.
[35]刘成全,颜天华,陈荣,等.NMDAR/PSD95/nNOS复合物在神经病理性疼痛中的研究进展[J].药学与临床研究,2015,23(2):168-171.
LIU C Q, YAN T H, CHEN R,et al. Research progress of nmdar/psd95/nnos complex in neuropathic pain[J].Pharm Clin Res, 2015, 23(2): 168-171.

更新日期/Last Update: 2018-02-08