[1]孙小平,邓扬嘉,李佳俊,等.PPARγ促进miR-16表达抑制脓毒症炎症反应的作用研究[J].第三军医大学学报,2018,40(02):141-148.
 SUN Xiaoping,DENG Yangjia,LI Jiajun,et al.Peroxisome proliferators-activated receptor-γ inhibits inflammatory response by upregulating miR-16 in sepsis[J].J Third Mil Med Univ,2018,40(02):141-148.
点击复制

PPARγ促进miR-16表达抑制脓毒症炎症反应的作用研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
40卷
期数:
2018年第02期
页码:
141-148
栏目:
基础医学
出版日期:
2018-01-30

文章信息/Info

Title:
Peroxisome proliferators-activated receptor-γ inhibits inflammatory response by upregulating miR-16 in sepsis
作者:
孙小平邓扬嘉李佳俊桂海波吴倩杜磊张瑾
重庆市中医院(道门口院部)重症医学科;重庆医科大学附属第一医院感染科
Author(s):
SUN Xiaoping DENG Yangjia LI Jiajun GUI Haibo WU Qian DU Lei ZHANG Jin

Department of Critical Care Medicine, Daomenkou Branch of Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011; Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China

关键词:
过氧化物酶增殖激活受体&gamma微小RNA-16脓毒症炎症
Keywords:
PPAR&gamma miR-16 FOXM1 sepsis inflammation
分类号:
R364.5;R392.13;R631
文献标志码:
A
摘要:

目的    探讨PPARγ上调miR-16的机制及其抑制脓毒症炎症反应的作用。方法经Real time RT-PCR检测脓毒症患者和健康者的外周血单核细胞PPARγ和miR-16的表达,分析其相关性;分别用PPARγ 激动剂RGZ、PPARγ siRNA或miR-16抑制剂(antagomir-16)处理THP-1和RAW246.7,经real time RT-PCR和Western blot检测miR16及其靶基因IKKα的表达;细胞转染含miR-16启动子的报告基因质粒,经PPARγ激动剂RGZ或拮抗剂GW9662处理后,检测细胞报告基因活性;细胞经PPARγ激动剂RGZ处理,再经LPS处理,ELISA检测炎症因子TNFα和IL6的表达;LPS诱导的脓毒症小鼠经PPARγ激动剂RGZ,或经antagomir-16预处理后,再经PPARγ 激动剂RGZ处理小鼠,real time RT-PCR检测小鼠外周血单核细胞中miR-16的表达,ELISA检测血清炎症因子TNFα和IL6的表达。结果脓毒症患者外周血单核细胞中PPARγ与miR-16的表达均降低且二者的表达呈显著负相关(P<0.05);PPARγ通过促进miR-16的启动子活性上调miR-16的表达,进而抑制miR-16靶分子IKKα的表达(P<0.05); PPARγ上调miR-16后显著抑制炎症细胞产生TNFα和IL-6(P<0.05);PPARγ上调miR-16抑制脓毒症小鼠血清TNFα和IL6的表达(P<0.05)。结论激动剂活化的PPARγ上调miR-16进而抑制细胞炎症因子表达及脓毒症小鼠炎症反应。

Abstract:

ObjectiveTo explore the mechanism by which peroxisome proliferatorsactivated receptorγ (PPARγ) upregulates miR16 and inhibits inflammatory response in sepsis. MethodsRealtime PCR was used to investigate the expression of PPARγ and miR16 in peripheral blood monocytes of patients with sepsis and healthy subjects, and the correlation between PPARγ and miR16 was analyzed. THP1 and RAW246.7 cells were treated with the PPARγ agonist RGZ, PPARγ siRNA or a mir16 inhibitor (antagomir16), and the changes in the expressions of miR16 and its target gene IKKα were detected using realtime PCR and Western blotting. The cells were transfected with luciferase reporter gene plasmid containing the miR16 promoter region followed by treatment with RGZ or the PPARγ antagonist GW9662, and luciferase reporter assay was performed to detect the changes in the reporter gene activity. In cells treated with RGZ followed then by LPS, the expression levels of the inflammatory factors tumor necrosis factor α (TNFα) and interleukin6 (IL6) were detected using ELISA. In a mouse model of LPSinduced sepsis, following treatment with RGZ with or without antagomir16 pretreatment, the expression of miR16 in peripheral blood monocytes was detected with realtime PCR, and the expression of TNFα and IL6 were determined using ELISA. ResultsThe expressions of PPARγ and miR16 in peripheral blood monocytes were significantly reduced in patients with sepsis (P<0.05). In THP1 and RAW246.7 cells, the activation of PPARγ obviously increased the expression of miR16 by enhancing the transcriptional activity of miR16 promoter and consequently inhibited the expression of IKKα, the target gene of miR16 (P<0.05). PPARγ inhibited production of TNFα and IL6 in the inflammatory cells by increasing the expression of miR16 (P<0.05). Treatment with PPARγ significantly decreased the serum levels of TNFα and IL6 in mouse models of LPSinduced sepsis (P<0.05). ConclusionActivation of PPARγ inhibits the expression of inflammatory cytokines in inflammatory cells and suppresses inflammatory response in septic mice by upregulating miR16.

参考文献/References:

[1]WANG J F, YU M L, YU G, et al. Serum miR146a and miR223 as potential new biomarkers for sepsis [J]. Biochem Biophys Res Commun, 2010, 394 (1): 184-188. DOI: 10.1016/j.bbrc.2010.02.145.
[2]CAI Z G, ZHANG S M, ZHANG Y, et al. MicroRNAs are dynamically regulated and play an important role in LPSinduced lung injury [J]. Can J Physiol Pharmacol, 2012, 90 (1): 37-43. DOI: 10.1139/y11095.
[3]HUANG C, XIAO X, CHINTAGARI N R, et al. MicroRNA and mRNA expression profiling in rat acute respiratory distress syndrome [J]. BMC Med Genomics, 2014, 7: 46. DOI: 10.1186/17558794746.
[4]LI T, MORGAN M J, CHOKSI S, et al. MicroRNAs modulate the noncanonical transcription factor NFkappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation [J]. Nat Immunol, 2010, 11(9): 799-805. DOI: 10.1038/ni.1918.
[5]KERSTEN S, DESVERGNE B, WAHLI W. Roles of PPARs in health and disease [J]. Nature, 2000,405(6785): 421-424. DOI: 10.1038/35013000.
[6]BARTEL D P. MicroRNAs: target recognition and regulatory functions [J]. Cell, 2009, 136 (2): 215-233. DOI: 10.1016/j.cell.2009.01.002.
[7]BOLDIN M P, BALTIMORE D. MicroRNAs, new effectors and regulators of NFkappaB [J]. Immunol Rev, 2012, 246(1): 205-220. DOI: 10.1111/j.1600065X.2011.01089.x.
[8]CARDOSO A L, GUEDES J R, de Lima M C. Role of microRNAs in the regulation of innate immune cells under neuroinflammatory conditions [J]. Curr Opin Pharmacol, 2016, 26: 1-9. DOI: 10.1016/j.coph.2015.09.001.
[9]TOMANKOVA T, PETREK M, GALLO J, et al. MicroRNAs: Emerging Regulators of ImmuneMediated Diseases [J]. Scand J Immunol, 2012, 75(2): 129-141. DOI: 10.1111/j.13653083.2011.02650.x.
[10]TAGANOV K D, BOLDIN M P, CHANG K J, et al. NFkappaBdependent induction of microRNA miR146, an inhibitor targeted to signaling proteins of innate immune responses [J]. Proc Natl Acad Sci USA, 2006, 103(33): 12481-12486. DOI: 10.1073/pnas.0605298103.
[11]TANG B, XIAO B, LIU Z, et al. Identification of MyD88 as a novel target of miR155, involved in negative regulation of Helicobacter pyloriinduced inflammation [J]. FEBS Lett, 2010, 584(8): 1481-1486. DOI: 10.1016/j.febslet.2010.02.063.
[12]HUANG R S, HU G Q, LIN B, et al. MicroRNA155 silencing enhances inflammatory response and lipid uptake in oxidized lowdensity lipoproteinstimulated human THP1 macrophages [J]. J Investig Med, 2010, 58(8): 961-967. DOI: 10.231/JIM.0b013e3181ff46d7.
[13]CEPPI M, PEREIRA P M, DUNANDSAUTHIER I, et al. MicroRNA155 modulates the interleukin1 signaling pathway in activated human monocytederived dendritic cells [J]. Proc Natl Acad Sci USA, 2009, 106 (8): 2735-2740. DOI: 10.1073/pnas.0811073106.
[14]SHEEDY F J, PALSSONMCDERMOTT E, HENNESSY E J, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR21 [J]. Nat Immunol, 2010, 11 (2): 141-147. DOI: 10.1038/ni.1828.
[15]KIM J S, LEE Y H, CHANG Y U, et al. PPARγ regulates inflammatory reaction by inhibiting the MAPK/NFκB pathway in C2C12 skeletal muscle cells[J]. J Physiol Biochem, 2017,  73(1): 49-57. DOI: 10.1007/s1310501605233.
[16]WANG F, LIU Y, BI Z. Pioglitazone inhibits growth of human retinoblastoma cells via regulation of NFκB inflammation signals[J]. J Recept Signal Transduct Res, 2017, 37(1): 94-99. DOI: 10.3109/10799893.2016.1171341.
[17]SENOL S P, TEMIZ M, GUDEN D S, et al. Contribution of PPARα/β/γ, AP1, importinα3, and RXRα to the protective effect of 5,14HEDGE, a 20HETE mimetic, against hypotension, tachycardia, and inflammation in a rat model of septic shock[J]. Inflamm Res, 2016 , 65(5): 367-387. DOI: 10.1007/s0001101609225.
[18]FUENTES E, GUZM NJOFRE L, MOORECARRASCO R, et al. Role of PPARs in inflammatory processes associated with metabolic syndrome (Review). Mol Med Rep[J]. 2013, 8(6): 1611-1616.  DOI: 10.3892/mmr.2013.1714.

更新日期/Last Update: 2018-01-30