[1]黄金柱,胡敏,孙建彬,等.β-桧木醇/纳米氧化锌/聚己内酯纳米纤维的体外抑菌效果及生物相容性评价[J].第三军医大学学报,2017,39(21):2084-2092.
 HUANG Jinzhu,HU Min,SUN Jianbin,et al.In vitro antibacterial effect and biocompatibility of nanofibers composed of beta-hinokitiol, zinc oxide nanoparticles and polycaprolactone[J].J Third Mil Med Univ,2017,39(21):2084-2092.
点击复制

β-桧木醇/纳米氧化锌/聚己内酯纳米纤维的体外抑菌效果及生物相容性评价(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
39卷
期数:
2017年第21期
页码:
2084-2092
栏目:
基础医学
出版日期:
2017-11-15

文章信息/Info

Title:
In vitro antibacterial effect and biocompatibility of nanofibers composed of beta-hinokitiol, zinc oxide nanoparticles and polycaprolactone
作者:
黄金柱胡敏孙建彬周敏盛芳芳卢来春
第三军医大学药学院药学综合实验中心
Author(s):
HUANG Jinzhu HU Min SUN Jianbin ZHOU Min SHENG Fangfang LU Laichun

Comprehensive Experimental Center, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China

关键词:
&beta-桧木醇纳米氧化锌纳米纤维抑菌效果生物相容性
Keywords:
beta-hinokitiol zinc oxide nanoparticles nanofibers antibacterial effect biocompatibility
分类号:
R284.1; R318.08; R618
文献标志码:
A
摘要:

目的     制备β-桧木醇/纳米氧化锌/聚己内酯(beta-hinokitiol/zinc oxide nanoparticles/polycaprolactone,β-H/ZnONPs/PCL)纳米纤维,评价其对耐药金黄色葡萄球菌(methicillin-resistant staphylococcus aureus, MRSA)的体外抑菌效果及生物相容性。方法     利用静电纺丝技术制备β-H/ZnONPs/PCL纳米纤维并通过扫描电镜观察,傅里叶红外光谱仪检测其光谱特征,同时检测其透气性、降解性能等指标,考察不同载药比例的纳米纤维对MRSA的体外抑菌效果。参照医疗器械生物学评价标准实施指南,初步研究其体外生物相容性。结果      在PCL纺丝液浓度(质量浓度)为16%、电压为14 kV、喷射速度为0.3 mL/h、接收距离为9 cm时制备的纳米纤维直径分布较为均匀,直径大多分布在150~350 nm,红外光谱显示各组纳米纤维在1 732 cm-1(C=O)、2 950 cm-1(C-H)附近有吸收峰。纳米纤维的透气性明显优于普通无纺布组,差异有统计学意义(P<0.05)。β-H/ZnONPs/PCL纳米纤维在PBS缓冲液(pH=7.5)中缓慢降解。ZnONPs制成纳米纤维后仍能增加βH对MRSA的抑菌作用,且纳米纤维中ZnONPs(质量浓度)的含量为1%时,纳米纤维对MRSA的抑菌效果随β-H含量的增大而增强(P<0.05),当β-H(质量浓度)含量为0.05%时,纳米纤维的抑菌效果并未随ZnONPs含量的变化而明显改变(P>0.05)。通过MTT法细胞毒性实验、细胞粘附性实验和溶血性实验表明0.05% β-H/0.1% ZnONPs/16% PCL组成的纳米纤维具有较好的体外生物安全性。结论      0.05% β-H/0.1% ZnONPs/16% PCL组成的纳米纤维对MRSA有较好的体外抑菌效果,其体外生物相容性评价结果符合医疗器械生物学标准。

Abstract:

Objective     To prepare the beta-hinokitiol/zinc oxide nanoparticles/polycaprolactone (β-H/ZnONPs/PCL) nanofibers, and evaluate its antibacterial effect on methicillinresistant Staphylococcus aureus (MRSA) and biocompatibility. Methods    β-H/ZnONPs/PCL) nanofibers were prepared with electrostatic spinning technology. Then the obtained nanofibers were observed with scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Water vapor permeability and degradation were also detected for the fibers. The antibacterial effect of the nanofibers loaded with different doses of ZnONPs on MRSA was determined in vitro. The biological compatibility of the obtained nanofibers was evaluated with the reference of the guidelines. Results     The prepared nanofibers had an uniform diameter (mainly 150 to 350 nm) under the condition of 16% PCL (w/v), voltage of 14 kV, ejection speed of 0.3 mL/h, and receiving distance of 9 cm. FTIR showed that absorption peaks were observed at the 1 732 cm-1 (C=O) and 2 950 cm-1 (C-H). The water vapor permeability of the nanofibers was superior to the nonwoven fabrics (P<0.05), and the nanofibers could be slowly degraded in the PBS (pH=7.5). The loaded ZnONPs in the nanofibers still increased the inhibitory effect of β-H on MRSA. When the ratio of ZnONPs was 1% (w/v), β-H exerted antibacterial effect on MRSA in a dose-dependent manner (P<0.05). However, the antibacterial effect was not promoted with the increase of ZnONPs concentration under the ratio of 0.05% βH (w/v) (P>0.05). Cytotoxicity test (MTT assay), cell adhesion test and hemolytic test indicated that 005% β-H/0.1 %ZnONPs/16% PCL had proved biocompatibility. Conclusion     Nanofibers of 0.05% β-H/0.1% ZnONPs/16% PCL exert sound antibacterial effect on MRSA, and meet the biocompatible standards for medical devices and equipments.

参考文献/References:

[1]KHOSRAVI A D, HOVEIZAVI H, MOHAMMADIAN A, et al. Genotyping of multidrug-resistant strains of Pseudomonas aeruginosa isolated from burn and wound infections by ERIC-PCR[J]. Acta Cir Bras, 2016, 31(3):206-211.DOI:10.1590/S0102-865020160030000009.
[2]DWORNICZEK E, PIWOWARCZYK J, BANIA J, et al. Enterococcus in wound infections: virulence and antimicrobial resistance[J]. Acta Microbiol Immunol Hung,2012,59(2):263-269.DOI:10.1556/AMicr.59.2012.2.11.
[3]AKINKUNMI E O, ADESUNKANMI A R, LAMIKANRA A. Pattern of pathogens from surgical wound infections in a Nigerian hospital and their antimicrobial susceptibility profiles[J]. Afr Health Sci, 2014, 14(4):802-809.DOI: 10.4314/ahs.v14i4.5.
[4]RIEGER K A,BIRCH N P, SCHIFFMAN J D. Designing electrospun nanofiber mats to promote wound healinga review[J]. J Mater Chem B, 2013, 1(36):4531-4541.DOI: 10.1039/C3TB20795A.
[5]NOMIYA K, YOSHIZAWA A, TSUKAGOSHI K. et al. Synthesis and structural characterization of silver(Ⅰ), aluminium(Ⅲ) and cobalt(Ⅱ) complexes with 4-isopropyltropolone (hinokitiol) showing noteworthy biological activities. Action of silver(Ⅰ)-oxygen bonding complexes on the antimicrobial activities[J].J InorgBiochem, 2004, 98(1):46-60.
[6]ARIMA Y, NAKAI Y, HAYAKAWA R, et al.Antibacterial effect of beta-thujaplicin on staphylococci isolated from atopic dermatitis: relationship between changes in the number of viable bacterial cells and clinical improvement in an eczematous lesion of atopic dermatitis[J].J AntimicrobChemother, 2003,51(1):113-122.
[7]FOTOPOULOU T, C'IRIC' A, KRITSI E. et al. Antimicrobial/Antibiofilm Activity and Cytotoxic Studies of β-Thujaplicin Derivatives[J].Arch Pharm (Weinheim), 2016,349(9):698-709.DOI:10.1002/ardp.201600095.
[8]SHIH Y H, CHANG K W, HSIA S M, et al. In vitro antimicrobial and anticancer potential of hinokitiol against oral pathogens and oral cancer cell lines[J].Microbiol Res, 2013,168(5):254-262.DOI:10.1016/j.micres.2012.12.007.
[9]MCGUFFIE M J, HONG J, BAHNG J H, et al. Zinc Oxide Nanoparticle Suspensions and LayerBy-Layer Coatings Inhibit Staphylococcal Growth[J]. Nanomedicine, 2016,12(1):33-42.DOI:10.1016/j.nano.2015.10.002.
[10]胡敏,李沉纹,明月,等.氧化锌/聚乙烯醇纳米纤维的制备及对创伤的治疗作用[J].第三军医大学学报, 2016, 38(23): 2499-2506.DOI:10.16016/j.1000-5404.2016 06081.
HU M,LI C W,MINGY,et al.Preparation of zinc oxide/polyvinyl alcohol nanofibers and its therapeutic effects on wound in rats[J].J Third Mil Med Univ,2016,38(23):2499-2506.DOI:10.16016/j.10005404.201606081.
[11]AGREN M S, CHVAPIL M, FRANZ-N L. Enhancement of re-epithelialization with topical zinc oxide in porcine partialthickness wounds[J]. J Surg Res, 1991,50(2):101-105.
[12]LANSDOWN A B, MIRASTSCHIJSKI U, STUBBS N, et al. Zinc in wound healing: theoretical, experimental, and clinical aspects[J]. Wound Repair Regen, 2007, 15(1): 2-16.DOI:10.1111/j.1524-475X.2006.00179.x.
[13]VARGAS E A, DO VALE BARACHO N C, DE BRITO J, et al. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications[J]. Acta Biomater, 2010,6(3):1069-1078.DOI:10.1016/j.actbio.2009.09.018.
[14]郝和平.医疗器械生物学评价标准实施指南[M].北京:中国标准出版社,2000:81-110.
HAOH P.Guidelines for the implementation of biological evaluation standards for medical devices[M].Beijing: Standards press of china, 2000:81-110.
[15]JAYAKUMAR R, PRABAHARAN M, SUDHEESH KUMAR P T, et al. Biomaterials based on chitin and chitosan in wound dressing applications[J]. Biotechnol Adv, 2011,29(3):322-337.DOI:10.1016/j.biotechadv.2011.01.005.
[16]HASSIBA A J, EL ZOWALATY M E, NASRALLAH G K, et al. Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing[J]. Nanomedicine (Lond), 2016, 11(6):715-737.DOI: 10.2217/nnm.15.211.

更新日期/Last Update: 2017-11-13