参考文献/References:
[1]WILLIS C L. Imaging in vivo astrocyte/endothelial cell interactions at the bloodbrain barrier[J]. Methods Mol Biol, 2012, 814: 515-529. DOI: 10.1007/978-1-61779-452-0_34.
[2]ADELSON P D, WHALEN M J, KOCHANEK P M, et al. Blood brain barrier permeability and acute inflammation in two models of traumatic brain injury in the immature rat: a preliminary report[J]. Acta Neurochir Suppl, 1998, 71: 104-106. DOI: 10.1007/978-3-7091-6475-4_31.
[3]HAWKINS B T. The BloodBrain Barrier/Neurovascular Unit in Health and Disease[J]. Pharmacological Reviews, 2005, 57(2): 173-185. DOI: 10.1124/pr.57.2.4.
[4]SHARMA H S, PATNAIK R, PATNAIK S, et al. Antibodies to serotonin attenuate closed head injury induced blood brain barrier disruption and brain pathology[J]. Ann N Y Acad Sci, 2007, 1122: 295-312. DOI: 10.1196/annals.1403.022.
[5]TOMKINS O, SHELEF I, KAIZERMAN I, et al. Bloodbrain barrier disruption in posttraumatic epilepsy[J]. J Neurol Neurosurg Psychiatr, 2008, 79(7): 774-777. DOI: 10.1136/jnnp.2007.126425.
[6]UNTERBERG A W, STOVER J, KRESS B, et al. Edema and brain trauma[J]. Neuroscience, 2004, 129(4): 1021-1029. DOI: 10.1016/j.neuroscience.2004.06.046.
[7]VAN VLIET E A, DA COSTA ARA JO S, REDEKER S, et al. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy[J]. Brain, 2007, 130(Pt 2): 521-534. DOI: 10.1093/brain/awl318.
[8]ZLOKOVIC BV. The bloodbrain barrier in health and chronic neurodegenerative disorders[J]. Neuron, 2008, 57(2): 178-201. DOI: 10.1016/j.neuron.2008.01.003.
[9]KORN A, GOLAN H, MELAMED I, et al. Focal cortical dysfunction and bloodbrain barrier disruption in patients with Postconcussion syndrome[J]. J Clin Neurophysiol, 2005, 22(1): 1-9. DOI: 10.1097/01.wnp.0000150973.24324.a7.
[10]KIRCHHOFF C, STEGMAIER J, BOGNER V, et al. Intrathecal and systemic concentration of NT-proBNP in patients with severe traumatic brain injury[J]. J Neurotrauma, 2006, 23(6): 943-949. DOI: 10.1089/neu.2006.23.943.
[11]STAHEL PF, MORGANTIKOSSMANN M C, Perez D, et al. Intrathecal levels of complement-derived soluble membrane attack complex (sC5b9) correlate with blood-brain barrier dysfunction in patients with traumatic brain injury[J]. J Neurotrauma, 2001, 18(8): 773-781. DOI: 10.1089/089771501316919139.
[12]KORN A, GOLAN H, MELAMED I, et al. Focal cortical dysfunction and blood-brain barrier disruption in patients with Postconcussion syndrome[J]. J Clin Neurophysiol, 2005, 22(1): 1-9. DOI: 10.1097/01.wnp.0000150973.24324.a7.
[13]STRBIAN D, DURUKAN A, PITKONEN M, et al. The blood-brain barrier is continuously open for several weeks following transient focal cerebral ischemia[J]. Neuroscience, 2008, 153(1): 175-181. DOI: 10.1016/j.neuroscience.2008.02.012.
[14]GERKE V. ANNEXINS A2 and A8 in endothelial cell exocytosis and the control of vascular homeostasis[J]. Biol Chem, 2016, 397(10): 995-1003. DOI: 10.1515/hsz20160207.
[15]LIU W, HAJJAR K A. The annexin A2 system and angiogenesis[J]. Biol Chem, 2016, 397(10): 1005-1016. DOI: 10.1515/hsz-2016-0166.
[16]ONISHI M, ICHIKAWA T, KUROZUMI K, et al. Annexin A2 regulates angiogenesis and invasion phenotypes of malignant glioma[J]. Brain Tumor Pathol, 2015, 32(3): 184-194. DOI: 10.1007/s10014-015-0216-6.
[17]LEE D B, JAMGOTCHIAN N, ALLEN S G, et al. Annexin A2 heterotetramer: role in tight junction assembly[J]. Am J Physiol Renal Physiol, 2004, 287(3): F481-F491. DOI: 10.1152/ajprenal.00175.2003.
[18]CRISTANTE E, MCARTHUR S, MAURO C, et al. Identification of an essential endogenous regulator of blood-brain barrier integrity, and its pathological and therapeutic implications[J]. Proc Natl Acad Sci USA, 2013, 110(3): 832-841. DOI: 10.1073/pnas.1209362110.
[19]LIGHTHALL J W. Controlled cortical impact: a new experimental brain injury model[J]. Journal of Neurotrauma, 1988, 5(1): 1.
[20]LAI C H, KUO K H, LEO J M. Critical role of actin in modulating BBB permeability[J]. Brain Research Reviews, 2005, 50(1): 7-13. DOI: 10.1016/j.brainresrev.2005.03.007.
[21]LUM H, ROEBUCK KA. Oxidant stress and endothelial cell dysfunction[J]. Am J Physiol, Cell Physiol, 2001, 280(4): C719-C741.
[22]MARCOS-RAMIRO B, GARC A-WEBER D, MILL N J. TNF-induced endothelial barrier disruption: beyond actin and Rho[J]. Thromb Haemost, 2014, 112(6): 1088-1102. DOI: 10.1160/TH14-04-0299.
[23]ABU TAHA A, SCHNITTLER HJ. Dynamics between actin and the VE-cadherin/catenin complex: novel aspects of the ARP2/3 complex in regulation of endothelial junctions[J]. Cell Adh Migr, 2014, 8(2): 125-135. DOI: 10.4161/cam.28243.
[24]MARMAROU A. Pathophysiology of traumatic brain edema: current concepts[J]. Acta Neurochir Suppl, 2003, 86: 7-10. DOI: 10.1007/978-3-7091-0651-8_2.
[25]FEICKERT H J, DROMMER S, HEYER R. Severe head injury in children: impact of risk factors on outcome[J]. J Trauma, 1999, 47(1): 33-38. DOI: 10.1097/00005373-19990700000008.
[26]DONKIN J J, VINK R. Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments[J]. Curr Opin Neurol, 2010, 23(3): 293-299. DOI: 10.1097/WCO.0b013e328337f451.
[27]KLATZO I. Pathophysiological aspects of brain edema[J]. Acta Neuropathol, 1987, 72(3): 236-239. DOI: 10.1007/bf00691095.
[28]CHOI D W. Glutamate receptors and the induction of excitotoxic neuronal death[J]. Prog Brain Res, 1994, 100: 47-51. DOI: 10.1016/s0079-6123(08)60767-0.
[29]CHOI D W. Excitotoxic cell death[J]. J Neurobiol, 1992, 23(9): 1261-1276. DOI: 10.1002/neu.480230915.
[30]SMITH J A, PARK S, KRAUSE J S, et al. Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration[J]. Neurochem Int, 2013, 62(5): 764-775. DOI: 10.1016/j.neuint.2013.02.013.
[31]SINGH I N, SULLIVAN P G, DENG Y, et al. Time course of posttraumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy [J]. J Cereb Blood Flow Metab, 2006, 26(11): 1407-1418. DOI: 10.1038/sj.jcbfm.9600297
[32]ALLAN S M, ROTHWELL N J. Inflammation in central nervous system injury[J]. Philos Trans R Soc Lond, B, Biol Sci, 2003, 358(1438): 1669-1677. DOI: 10.1098/rstb.2003.1358.
[33]DAS M, MOHAPATRA S, MOHAPATRA S S. New perspectives on central and peripheral immune responses to acute traumatic brain injury[J]. J Neuroinflammation, 2012, 9: 236. DOI: 10.1186/1742-2094-9-236.
[34]HALL E D, SULLIVAN P G, GIBSON T R, et al. Spatial and temporal characteristics of neurodegeneration after controlled cortical impact in mice: more than a focal brain injury[J]. J Neurotrauma, 2005, 22(2): 252-265. DOI: 10.1089/neu.2005.22.252.
[35]DENG Y, THOMPSON B, GAO X, et al. Temporal relationship of peroxynitriteinduced oxidative damage, calpain-mediated cytoskeletal degradation and neurodegeneration after traumatic brain injury[J]. Experimental Neurology, 2007, 205(1): 154-165. DOI: 10.1016/j.expneurol.2007.01.023.
[36]MAZZEO A T, BEAT A, SINGH A, et al. The role of mitochondrial transition pore, and its modulation, in traumatic brain injury and delayed neurodegeneration after TBI[J]. Exp Neurol, 2009, 218(2): 363-370. DOI: 10.1016/j.expneurol.2009.05.026.
[37]LEE J Y, LEE H E, KANG S R, et al. Fluoxetine inhibits transient global ischemia-induced hippocampal neuronal death and memory impairment by preventing blood-brain barrier disruption[J]. Neuropharmacology, 2014, 79: 161-171. DOI: 10.1016/j.neuropharm.2013.11.011.