[1]柴伟娜,程崇杰,蒋理,等.膜粘连蛋白Ⅱ通过保护血脑屏障促进小鼠颅脑创伤后早期神经功能的恢复[J].第三军医大学学报,2017,39(18):1808-1815.
 CHAI Weina,CHENG Chongjie,JIANG Li,et al.Recombinant annexin A2 improves early neurological function through blood-brain barrier protection in mice after controlled cortical impact[J].J Third Mil Med Univ,2017,39(18):1808-1815.
点击复制

膜粘连蛋白Ⅱ通过保护血脑屏障促进小鼠颅脑创伤后早期神经功能的恢复(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
39卷
期数:
2017年第18期
页码:
1808-1815
栏目:
基础医学
出版日期:
2017-09-30

文章信息/Info

Title:
Recombinant annexin A2 improves early neurological function through blood-brain barrier protection in mice after controlled cortical impact
作者:
柴伟娜程崇杰蒋理黄志坚钟建军刘汉何骏驰吴精川孙晓川
重庆医科大学附属第一医院神经外科
Author(s):
CHAI Weina CHENG Chongjie JIANG Li HUANG Zhijian ZHONG Jianjun LIU Han HE Junchi WU Jingchuan SUN Xiaochuan

Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China

关键词:
膜粘连蛋白Ⅱ 创伤性颅脑损伤神经保护血脑屏障
Keywords:
annexin A2 traumatic brain injury neuroprotection blood-brain barrier  
分类号:
R651.15;R969;R977.6
文献标志码:
A
摘要:

目的     评估外源性重组膜粘连蛋白Ⅱ(annexin 2, A2)对创伤性颅脑损伤后血脑屏障以及早期神经功能预后的影响,探讨A2蛋白作为脑创伤治疗靶点的可能性。方法     在成年雄性小鼠上建立控制性皮质损伤模型(controlled cortical impact, CCI),检测伤前与伤后不同时间点伤侧半球脑组织中内源性A2蛋白的表达。随后,小鼠CCI伤后通过尾静脉注射重组人源性A2蛋白,并检测血脑屏障通透性、大脑半球组织含水量、紧密连接蛋白表达量、海马区神经元数量、伤灶体积及早期行为学改变。结果     从CCI后3 d起,A2蛋白表达明显增高,并在7 d时达到高峰(P<0.05),此后蛋白表达逐渐下降,21 d恢复到基值;伤前内皮细胞几乎不表达A2蛋白,伤后在伤侧部分内皮细胞表达A2蛋白。在伤后2 h给予重组A2蛋白能显著降低血脑屏障通透性从而降低脑组织中Evans蓝(Evans blue, EB)渗出量(P<005),增加ZO-1蛋白表达(P<0.05),减少伤后CA1和CA3区神经元丢失,CA1区和CA3区平均神经元存活数量分别为159.5和131,6,均显著高于对照组(P<0.05),并促进伤后7 d内运动功能康复(P<0.05)。能够减少致伤后脑组织含水量,但不具有统计学差异(P>0.05),两组间伤灶体积也无统计学差异(P>0.05)。结论     在创伤性颅脑损伤早期,给予重组人A2蛋白能提高内皮细胞ZO-1合成,保护血脑屏障,减轻神经组织继发性损伤,促进伤后神经功能恢复。

Abstract:

Objective     To determine the effect of exogenous annexin A2 (A2) on the permeability of blood-brain barrier (BBB) and early neurological prognosis following traumatic brain injury (TBI) in order to investigate the possibility of A2 as the target for brain traumatic treatment. Methods     After the controlled cortical impact (CCI )model was established on adult male mice, the temporal and spatial profile of endogenous A2 protein expression in injured hemisphere was examined before and after TBI. Evans blue extravasation, water content, expression of tight junctional proteins were quantified to evaluate the BBB function after the mice were treated with recombinant-human A2 (rA2, 1 mg/kg, tail vein injection) or saline in 2 h post-CCI. Then neuron counts, lesion size and behavior tests were performed to investigate the neuroprotective effects of rA2. Results     After CCI, endogenous A2 expression was increased since day 3, reached the summit at day 7 (P<0.05), and then was decreased till day 21 to baseline level. A2 was not expressed in the endothelial cells before CCI, but was expressed in the some endothelial cells in injured hemisphere. rA2 treatment significantly reduced the BBB permeability and thus decreased the amount of evans blue extravasation (P<0.05), enhanced the ZO-1 expression (P<0.05), reduced neuronal loss in hippocampal areas CA1 and CA3, with the numbers of survival neurons of 159.5 and 134.6 respectively, significantly high than those in the control (P<0.05), improved the rehabilitation of motor function within 7 d after injury, and decreased water content and lesion volume, though having no statistical differences when compared with the control (P>0.05). ConclusionIn       the early stage after TBI, rA2 treatment can improve the synthesis of ZO-1, protect BBB, attenuate secondary brain injury, and contribute neuronal functional recovery.

参考文献/References:

[1]WILLIS C L. Imaging in vivo astrocyte/endothelial cell interactions at the bloodbrain barrier[J]. Methods Mol Biol, 2012, 814: 515-529. DOI: 10.1007/978-1-61779-452-0_34.
[2]ADELSON P D, WHALEN M J, KOCHANEK P M, et al. Blood brain barrier permeability and acute inflammation in two models of traumatic brain injury in the immature rat: a preliminary report[J]. Acta Neurochir Suppl, 1998, 71: 104-106. DOI: 10.1007/978-3-7091-6475-4_31.
[3]HAWKINS B T. The BloodBrain Barrier/Neurovascular Unit in Health and Disease[J]. Pharmacological Reviews, 2005, 57(2): 173-185. DOI: 10.1124/pr.57.2.4.
[4]SHARMA H S, PATNAIK R, PATNAIK S, et al. Antibodies to serotonin attenuate closed head injury induced blood brain barrier disruption and brain pathology[J]. Ann N Y Acad Sci, 2007, 1122: 295-312. DOI: 10.1196/annals.1403.022.
[5]TOMKINS O, SHELEF I, KAIZERMAN I, et al. Bloodbrain barrier disruption in posttraumatic epilepsy[J]. J Neurol Neurosurg Psychiatr, 2008, 79(7): 774-777. DOI: 10.1136/jnnp.2007.126425.
[6]UNTERBERG A W, STOVER J, KRESS B, et al. Edema and brain trauma[J]. Neuroscience, 2004, 129(4): 1021-1029. DOI: 10.1016/j.neuroscience.2004.06.046.
[7]VAN VLIET E A, DA COSTA ARA JO S, REDEKER S, et al. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy[J]. Brain, 2007, 130(Pt 2): 521-534. DOI: 10.1093/brain/awl318.
[8]ZLOKOVIC BV. The bloodbrain barrier in health and chronic neurodegenerative disorders[J]. Neuron, 2008, 57(2): 178-201. DOI: 10.1016/j.neuron.2008.01.003.
[9]KORN A, GOLAN H, MELAMED I, et al. Focal cortical dysfunction and bloodbrain barrier disruption in patients with Postconcussion syndrome[J]. J Clin Neurophysiol, 2005, 22(1): 1-9. DOI: 10.1097/01.wnp.0000150973.24324.a7.
[10]KIRCHHOFF C, STEGMAIER J, BOGNER V, et al. Intrathecal and systemic concentration of NT-proBNP in patients with severe traumatic brain injury[J]. J Neurotrauma, 2006, 23(6): 943-949. DOI: 10.1089/neu.2006.23.943.
[11]STAHEL PF, MORGANTIKOSSMANN M C, Perez D, et al. Intrathecal levels of complement-derived soluble membrane attack complex (sC5b9) correlate with blood-brain barrier dysfunction in patients with traumatic brain injury[J]. J Neurotrauma, 2001, 18(8): 773-781. DOI: 10.1089/089771501316919139.
[12]KORN A, GOLAN H, MELAMED I, et al. Focal cortical dysfunction and blood-brain barrier disruption in patients with Postconcussion syndrome[J]. J Clin Neurophysiol, 2005, 22(1): 1-9. DOI: 10.1097/01.wnp.0000150973.24324.a7.
[13]STRBIAN D, DURUKAN A, PITKONEN M, et al. The blood-brain barrier is continuously open for several weeks following transient focal cerebral ischemia[J]. Neuroscience, 2008, 153(1): 175-181. DOI: 10.1016/j.neuroscience.2008.02.012.
[14]GERKE V. ANNEXINS A2 and A8 in endothelial cell exocytosis and the control of vascular homeostasis[J]. Biol Chem, 2016, 397(10): 995-1003. DOI: 10.1515/hsz20160207.
[15]LIU W, HAJJAR K A. The annexin A2 system and angiogenesis[J]. Biol Chem, 2016, 397(10): 1005-1016. DOI: 10.1515/hsz-2016-0166.
[16]ONISHI M, ICHIKAWA T, KUROZUMI K, et al. Annexin A2 regulates angiogenesis and invasion phenotypes of malignant glioma[J]. Brain Tumor Pathol, 2015, 32(3): 184-194. DOI: 10.1007/s10014-015-0216-6.
[17]LEE D B, JAMGOTCHIAN N, ALLEN S G, et al. Annexin A2 heterotetramer: role in tight junction assembly[J]. Am J Physiol Renal Physiol, 2004, 287(3): F481-F491. DOI: 10.1152/ajprenal.00175.2003.
[18]CRISTANTE E, MCARTHUR S, MAURO C, et al. Identification of an essential endogenous regulator of blood-brain barrier integrity, and its pathological and therapeutic implications[J]. Proc Natl Acad Sci USA, 2013, 110(3): 832-841. DOI: 10.1073/pnas.1209362110.
[19]LIGHTHALL J W. Controlled cortical impact: a new experimental brain injury model[J]. Journal of Neurotrauma, 1988, 5(1): 1.
[20]LAI C H, KUO K H, LEO J M. Critical role of actin in modulating BBB permeability[J]. Brain Research Reviews, 2005, 50(1): 7-13. DOI: 10.1016/j.brainresrev.2005.03.007.
[21]LUM H, ROEBUCK KA. Oxidant stress and endothelial cell dysfunction[J]. Am J Physiol, Cell Physiol, 2001, 280(4): C719-C741.
[22]MARCOS-RAMIRO B, GARC A-WEBER D, MILL N J. TNF-induced endothelial barrier disruption: beyond actin and Rho[J]. Thromb Haemost, 2014, 112(6): 1088-1102. DOI: 10.1160/TH14-04-0299.
[23]ABU TAHA A, SCHNITTLER HJ. Dynamics between actin and the VE-cadherin/catenin complex: novel aspects of the ARP2/3 complex in regulation of endothelial junctions[J]. Cell Adh Migr, 2014, 8(2): 125-135. DOI: 10.4161/cam.28243.
[24]MARMAROU A. Pathophysiology of traumatic brain edema: current concepts[J]. Acta Neurochir Suppl, 2003, 86: 7-10. DOI: 10.1007/978-3-7091-0651-8_2.
[25]FEICKERT H J, DROMMER S, HEYER R. Severe head injury in children: impact of risk factors on outcome[J]. J Trauma, 1999, 47(1): 33-38. DOI: 10.1097/00005373-19990700000008.
[26]DONKIN J J, VINK R. Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments[J]. Curr Opin Neurol, 2010, 23(3): 293-299. DOI: 10.1097/WCO.0b013e328337f451.
[27]KLATZO I. Pathophysiological aspects of brain edema[J]. Acta Neuropathol, 1987, 72(3): 236-239. DOI: 10.1007/bf00691095.
[28]CHOI D W. Glutamate receptors and the induction of excitotoxic neuronal death[J]. Prog Brain Res, 1994, 100: 47-51. DOI: 10.1016/s0079-6123(08)60767-0.
[29]CHOI D W. Excitotoxic cell death[J]. J Neurobiol, 1992, 23(9): 1261-1276. DOI: 10.1002/neu.480230915.
[30]SMITH J A, PARK S, KRAUSE J S, et al. Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration[J]. Neurochem Int, 2013, 62(5): 764-775. DOI: 10.1016/j.neuint.2013.02.013.
[31]SINGH I N, SULLIVAN P G, DENG Y, et al. Time course of posttraumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy [J]. J Cereb Blood Flow Metab, 2006, 26(11): 1407-1418. DOI: 10.1038/sj.jcbfm.9600297
[32]ALLAN S M, ROTHWELL N J. Inflammation in central nervous system injury[J]. Philos Trans R Soc Lond, B, Biol Sci, 2003, 358(1438): 1669-1677. DOI: 10.1098/rstb.2003.1358.
[33]DAS M, MOHAPATRA S, MOHAPATRA S S. New perspectives on central and peripheral immune responses to acute traumatic brain injury[J]. J Neuroinflammation, 2012, 9: 236. DOI: 10.1186/1742-2094-9-236.
[34]HALL E D, SULLIVAN P G, GIBSON T R, et al. Spatial and temporal characteristics of neurodegeneration after controlled cortical impact in mice: more than a focal brain injury[J]. J Neurotrauma, 2005, 22(2): 252-265. DOI: 10.1089/neu.2005.22.252.
[35]DENG Y, THOMPSON B, GAO X, et al. Temporal relationship of peroxynitriteinduced oxidative damage, calpain-mediated cytoskeletal degradation and neurodegeneration after traumatic brain injury[J]. Experimental Neurology, 2007, 205(1): 154-165. DOI: 10.1016/j.expneurol.2007.01.023.
[36]MAZZEO A T, BEAT A, SINGH A, et al. The role of mitochondrial transition pore, and its modulation, in traumatic brain injury and delayed neurodegeneration after TBI[J]. Exp Neurol, 2009, 218(2): 363-370. DOI: 10.1016/j.expneurol.2009.05.026.
[37]LEE J Y, LEE H E, KANG S R, et al. Fluoxetine inhibits transient global ischemia-induced hippocampal neuronal death and memory impairment by preventing blood-brain barrier disruption[J]. Neuropharmacology, 2014, 79: 161-171. DOI: 10.1016/j.neuropharm.2013.11.011.

相似文献/References:

[1]张扬,黎海涛,谢兵,等.成人轻中型颅脑损伤挫裂伤区域的多体素1H-MRS研究[J].第三军医大学学报,2009,31(02):172.
 ZHANG Yang,LI Hai-tao,XIE Bing,et al.Multivoxel 1H-MRS for contusion and laceration area of mild-to-moderate traumatic brain injury with in adults[J].J Third Mil Med Univ,2009,31(18):172.

更新日期/Last Update: 2017-09-29