[1]蒋兴宇,赵霞,邹凌云,等.适度运动对人体肠道菌群结构的影响[J].第三军医大学学报,2017,39(18):1824-1831.
 JIANG Xingyu,ZHAO Xia,ZOU Lingyun,et al.Moderate exercise induces shift in the composition of human gut microbiota[J].J Third Mil Med Univ,2017,39(18):1824-1831.
点击复制

适度运动对人体肠道菌群结构的影响
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
39卷
期数:
2017年第18期
页码:
1824-1831
栏目:
临床医学
出版日期:
2017-09-30

文章信息/Info

Title:
Moderate exercise induces shift in the composition of human gut microbiota
作者:
蒋兴宇赵霞邹凌云蒲晓允
第三军医大学新桥医院检验科, 第三军医大学微生物教研室
Author(s):
JIANG Xingyu ZHAO Xia ZOU Lingyun PU Xiaoyun

Department  of  Clinical Laboratory, Xinqiao  Hospital, Third Military Medical University, Chongqing, 400037; Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China.

关键词:
肠道菌群运动16S rDNA高通量测序
Keywords:
gut microbiota exercise 16S rRNA high throughput sequencing
分类号:
R161.1;R333.3;R339.4
文献标志码:
A
摘要:

目的    适度运动有益于身心健康。本研究从肠道菌群结构的角度来探讨运动对人体健康的影响。方法    招募运动组和少动组志愿者人群,利用16S rDNA 高通量测序技术分析志愿者肠道菌群结构。结果    高通量测序共获得61 888 个OTUs,其中已注释的OTUs有61 149 个。PCoA分析显示,运动组和少动组之间肠道菌群结构存在显著差异。运动组中毛螺菌科(Lachnospiraceae)和拟杆菌科(Bacteroidaceae) 的丰度显著高于少动组(P=2.5627×10-7,P=0.000 178 4),普雷沃氏菌科(Prevotellaceae)和韦荣氏球菌科(Veillonellaceae)的丰度显著低于少动组(P=0.000 003 46,P=0.000 017 41)。有3株可培养的菌株在运动组中丰度显著增加,分别为瘤胃球菌属的Ruminococcus_sp.5_1_39BFAA,双歧杆菌属的Bifidobacterium_adolescentis以及丁酸产盐菌属的Anaerostipes_hadrus。在运动组中显著增加的肠道菌,如拟杆菌科,双歧杆菌属的Bifidobacterium_adolescentis以及Anaerostipes_hadrus,能够代谢产生丰富的SCFAs,对肠粘膜免疫系统动态平衡的维持具有重要意义。结论    运动可能通过肠道菌群结构的改变及其与肠黏膜系统的相互作用对人体产生积极影响。

Abstract:

Objective      To investigate effects of moderate exercise on human health from the perspective of gut microbiota.  Methods     Totally 40 volunteers were recruited, and assigned into the exercise group (n=20) and the sedentary group (n=20) according their life styles. The feces were collected and total fecal DNA was extracted, and then all the microorganisms in the intestinal tract of volunteers were detected and analyzed by using the 16S rDNA-based high throughput sequencing for operational taxonomic units (OTUs) clustering. Species classification analysis was performed according to the sequencing data in order to obtain the corresponding species information and abundance distribution. Results     A total of 61 888 OTUs were obtained from the high throughput sequencing data through OTUs analysis, of which 61 149 OTUs were annotated. The principal co-ordinates analysis (PCoA) indicated that significant differences were observed between the 2 groups. The abundances of Lachnospiraceae and Bacteroidaceae were significantly higher (P=2.5627×10-7, P=0.000 178 4), while those of Prevotellaceae and Veillonellaceae were obviously lower in the moderate exercise group than the sedentary group (P=0.000 003 46, P=0.000 017 41). The abundances of 3 culturable strains (Ruminococcus_sp.5_1_39BFAA, Bifidobacterium_adolescentis and butyrate salt producing bacteria Anaerostipes_hadrus) were significantly increased in the exercise group. The obviously increased bacteria, including Bacteroides, Bifidobacterium_adolescentis of Bifidobacterium and Anaerostipes_hadrus, could produce lots of shortchain fatty acids (SCFA), which were important for the maintenance of dynamic balance of intestinal mucosal immune system. Conclusion     Exercise may have a positive effect on the human body through changes in intestinal flora composition and its interaction with the intestinal mucosal system.

参考文献/References:

[1]WARREN T Y, BARRY V, HOOKER S P, et al. Sedentary behaviors increase risk of cardiovascular disease mortality in men[J]. Med Sci Sports Exerc, 2010, 42(5): 879-885. DOI: 10.1249/MSS.0b013e3181c3aa7e.
[2]OWEN N, HEALY G N, MATTHEWS C E, et al. Too Much Sitting[J]. Exercise and Sport Sciences Reviews, 2010, 38(3): 105-113. DOI: 10.1097/jes.0b013e3181e373a2.
[3]WARBURTON D E, NICOL C W, BREDIN S S. Health benefits of physical activity: the evidence[J]. journal de l'Association medicale canadienne, 2006, 174(6): 801-809. DOI: 10.1503/cmaj.051351.
[4]HOOPER L V, LITTMAN D R, MACPHERSON A J. Interactions between the microbiota and the immune system[J]. Science, 2012, 336(6086): 1268-1273. DOI: 10.1126/science.1223490.
[5]GILBERT J A, QUINN R A, DEBELIUS J, et al. Microbiomewide association studies link dynamic microbial consortia to disease[J]. Nature, 2016, 535(7610): 94-103. DOI: 10.1038/nature18850.
[6]B-CKHED F, MANCHESTER J K, SEMENKOVICH C F, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice[J]. Proc Natl Acad Sci USA, 2007, 104(3): 979-984. DOI: 10.1073/pnas.0605374104.
[7]SAMPSON T R, DEBELIUS J W, THRON T, et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease[J]. Cell, 2016, 167(6): 1469-1480.e12. DOI: 10.1016/j.cell.2016.11.018.
[8]JOBIN C. GPR109a: the missing link between microbiome and good health[J]. Immunity, 2014, 40(1): 8-10. DOI:10.1016/j.immuni.2013.12.009.
[9]MATSUMOTO M, INOUE R, TSUKAHARA T, et al. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum[J]. Biosci Biotechnol Biochem, 2008, 72(2): 572-576. DOI:10.1271/bbb.70474.
[10]QUEIPO-ORTU O M I, SEOANE L M, MURRI M, et al. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels[J]. PLoS ONE, 2013, 8(5): e65465. DOI: 10.1371/journal.pone.0065465.
[11]CHOI J J, EUM S Y, RAMPERSAUD E, et al. Exercise Attenuates PCBInduced Changes in the Mouse Gut Microbiome[J]. Environmental Health Perspectives, 2013, 121(6): 725-730. DOI: 10.1289/ehp.1306534.
[12]EVANS C C, LEPARD K J, KWAK J W, et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat dietinduced obesity[J]. PLoS ONE, 2014, 9(3): e92193. DOI: 10.1371/journal.pone.0092193.
[13]CLARKE S F, MURPHY E F, O'SULLIVAN O, et al. Exercise and associated dietary extremes impact on gut microbial diversity[J]. Gut, 2014, 63(12): 1913-1920. DOI: 10.1136/gutjnl2013306541.
[14]LIU T W, PARK Y M, HOLSCHER H D, et al. Physical Activity Differentially Affects the Cecal Microbiota of Ovariectomized Female Rats Selectively Bred for High and Low Aerobic Capacity[J]. Plos one, 2015, 10(8): e0136150. DOI: 10.1371/journal.pone.0136150.
[15]ALMEIDA M L, FERINGER W H, CARVALHO J R, et al. Intense Exercise and Aerobic Conditioning Associated with Chromium or L-Carnitine Supplementation Modified the Fecal Microbiota of Fillies[J]. PLoS ONE, 2016, 11(12): e0167108. DOI: 10.1371/journal.pone.0167108.

相似文献/References:

[1]陈有,高钰琪,李素芝,等.高原肺水肿动物模型的初步研究[J].第三军医大学学报,2006,28(11):1176.
[2]蔡明春,黄庆愿,高钰琪,等.模拟高原运动大鼠心肌重塑与肌球蛋白重链的适应性变化[J].第三军医大学学报,2005,27(21):2128.
[3]程波利,黄英,舒畅,等.355名哮喘患儿运动现况调查[J].第三军医大学学报,2009,31(20):2016.
 CHENG Bo-li,HUANG Ying,SHU Chang,et al.Physical activity in children with asthma: a cross-sectional investigation of 355 cases[J].J Third Mil Med Univ,2009,31(18):2016.
[4]蔡明春,高文祥,陈建,等.缺氧复合运动大鼠心肌线粒体功能的变化[J].第三军医大学学报,2007,29(08):678.
 CAI Ming-chun,GAO Wen-xiang,CHEN Jian,et al.Effects of training under hypobaric hypoxia on rat myocardial mitochondrial function[J].J Third Mil Med Univ,2007,29(18):678.
[5]高钰琪,黄庆愿,史景泉,等.缺氧条件下运动可促进骨骼肌毛细血管新生——缺氧条件下的体力活动有利于机体对高原的习服[J].第三军医大学学报,2000,22(01):0.[doi:10.16016/j.1000-5404.2000.01.038 ]
[6]王振华,王秀芬,高晋华,等.80例近端胃运动测定结果分析[J].第三军医大学学报,1992,14(06):0.[doi:10.16016/j.1000-5404.1992.06.026 ]
 Wang Zenghua,Wang Xiufen,Gao Jinhua.[J].J Third Mil Med Univ,1992,14(18):0.[doi:10.16016/j.1000-5404.1992.06.026 ]
[7]周勇敬,孙秉庸,杨仲强,等.急性缺氧复合运动对清醒山羊心肺血流动力学的影响[J].第三军医大学学报,1987,09(03):0.[doi:10.16016/j.1000-5404.1987.03.010 ]
 Zhou Yongjin,et al.[J].J Third Mil Med Univ,1987,09(18):0.[doi:10.16016/j.1000-5404.1987.03.010 ]

更新日期/Last Update: 2017-09-29