[1]余闻静,杨翔,刘羽,等.不同芽孢杆菌的太赫兹时域光谱特征研究[J].第三军医大学学报,2017,39(13):1315-1320.
 YU Wenjing,YANG Xiang,LIU Yu,et al.Characteristics of different kinds of bacillus by Terahertz time-domain spectroscopy[J].J Third Mil Med Univ,2017,39(13):1315-1320.
点击复制

不同芽孢杆菌的太赫兹时域光谱特征研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
39卷
期数:
2017年第13期
页码:
1315-1320
栏目:
基础医学
出版日期:
2017-07-15

文章信息/Info

Title:
Characteristics of different kinds of bacillus by Terahertz time-domain spectroscopy
作者:
余闻静杨翔刘羽赵祥林钟劝杨柯府伟灵
第三军医大学西南医院检验科;中国人民解放军第三二四医院检验科
Author(s):
YU Wenjing YANG Xiang LIU Yu ZHAO Xiang LIN Zhongquan YANG Ke FU Weiling

Department of Medical Laboratory, Southwest Hospital, Third Military Medical University, Chongqing, 400038; Department of Medical Laboratory, No. 324 Hospital of PLA, Chongqing, 400023, China

关键词:
太赫兹时域光谱芽孢杆菌细菌分析吸收系数
Keywords:
Terahertz time-domain spectroscopy bacillus bacterial analysis absorption coefficient
分类号:
R312; R378; R446
文献标志码:
A
摘要:

目的      应用太赫兹时域光谱技术对常见致病芽孢杆菌进行检测。方法       使用太赫兹时域光谱技术对枯草芽孢杆菌、蜡状芽孢杆菌、苏云金芽孢杆菌3种致病菌进行了室温、干燥环境下太赫兹时域光谱测试。得到了样品在0.2~2.0 THz 波段的太赫兹吸收曲线。结果        随着频率增加不同含量的芽孢杆菌冻干粉的太赫兹波段的吸收系数是增加的,并且有不同的吸收趋势;此外不同种属的芽孢杆菌的冻干粉和菌落也具有明显不同的吸收系数,这意味着3种样品的分子及官能团的构成和存在状态是不同的,更有力地揭示3种样品的确具有不同的生物成分组成和结构。结论       太赫兹时域光谱技术作为一种快速高效、无需标记且无破坏性的探测方法,为芽孢杆菌的检测和鉴别提供了一种行之有效的方法。

Abstract:

Objective       To detect the common disease-causing bacillus species by Terahertz time-domain spectroscopic (THz-TDS) technique. Methods        Three kinds of bacillus species, Bacillus cereus, Bacillus subtilis and Bacillus thuringiensis were tested and investigated with the THzTDS technique at room temperature in dry environment. The absorption coefficient of 3 bacillus samples were calculated in the frequency of 0.2~2.0 THz. Results        The absorption coefficients of lyophilized powder containing different amounts of bacillus species were increased as the increase of frequency, and had considerable different absorption trend among the samples. Different coefficients were also observed in the lyophilized powders of different bacillus species and bacterial colonies, which suggested the 3 kinds of species were made up of different molecular vibration and multi-molecular groups in the THz spectrum, and had different biological components and structure in the 3 bacillus samples. Conclusion       THz-TDS is a fast, efficient, non-marking and non-destructive detection method, and provides an effective method for the detection and identification of bacillus species.

参考文献/References:

[1]POUDEL P, TASHIRO Y, SAKAI K. New application of bacillus strains for optically pure Llactic acid production: general overview and future prospects[J]. Biosci Biotechnol Biochem, 2016, 80(4): 642-654. DOI:10.1080/09168451.2015.1095069.
[2]VAN BELKUM A, DURAND G, PEYRET M, et al. Rapid clinical bacteriology and its future impact[J]. Ann Lab Med, 2013, 33(1): 14-27. DOI:10.3343/alm.2013.33.1.14.
[3]DABOUIS V, CHANCERELLE Y, CROUZIER D, et al. What's new in biomedical applications for Terahertz (THz) technology[J]. Med Sci (Paris), 2009, 25(8-9): 739-743. DOI:10.1051/medsci/2009258-9739.
[4]SHUMYATSKY P, ALFANO R R. Terahertz sources[J]. J Biomed Opt, 2011, 16(3): 033001. DOI:10.1117/1.3554742.
[5]QI N, ZHANG Z Y, XIANG Y H. Application of terahertz technology in medical testing and diagnosis[J]. Guang pu, 2013, 33(8): 2064-2070.
[6]YANG X, WEI D, YAN S, et al. Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy[J]. J Biophotonics, 2016, 9(10): 1050-1058. DOI:10.1002/jbio.201500270.
[7]YANG X, YANG K, LUO Y, et al. Terahertz spectroscopy for bacterial detection: opportunities and challenges[J]. Appl Microbiol Biotechnol, 2016, 100(12): 5289-5299. DOI:10.1007/s00253-0167569-6.
[8]UENO Y, AJITO K. Analytical terahertz spectroscopy[J]. Anal Sci, 2008, 24(2): 185-192. DOI:10.2116/analsci.24.185.
[9]VICK A, ESTRADA C A, RODRIGUEZ J M. Clinical reasoning for the infectious disease specialist: a primer to recognize cognitive biases[J]. Clin Infect Dis, 2013, 57(4): 573-578. DOI:10.1093/cid/cit248.
[10]HEUGEN U, SCHWAAB G, BR-NDERMANN E,, et al. Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy[J]. Proc Natl Acad Sci USA, 2006, 103(33): 12301-12306. DOI:10.1073/pnas.0604897103.
[11]LAJEVARDIPOUR A, WOOD A W, MCINTOSH R L, et al. Estimation of dielectric values for tissue water in the Terahertz range[J]. Bioelectromagnetics, 2016, 37(8):563-567.
[12]GE H, JIANG Y, LIAN F, et al. Quantitative determination of aflatoxin B1 concentration in acetonitrile by chemometric methods using terahertz spectroscopy[J]. Food Chem, 2016, 209: 286-292. DOI:10.1016/j.foodchem.2016.04.070.
[13]DENG X H, LIU J T, YUAN J, et al. Tunable THz absorption in graphene-based heterostructures[J]. Opt Express, 2014, 22(24): 30177-30183. DOI:10.1364/oe.22.030177.
[14]RUGGIERO M T, KORTER T M. Uncovering the terahertz spectrum of copper sulfate pentahydrate[J]. J Phys Chem A, 2016, 120(2): 227-232. DOI:10.1021/acs.jpca.5b10063.
[15]WALLAUER J, BITZER A, WASELIKOWSKI S, et al. Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study[J]. Opt Express, 2011, 19(18): 17283-17292.

更新日期/Last Update: 2017-07-11