[1]陈晓轶,曹洁,蔡方成.事件相关电位外源性反应电位的发育规律[J].第三军医大学学报,2017,39(17):1762-1767.
 CHEN Xiaoyi,CAO Jie,CAI Fangcheng.Developmental rules of auditory event-related potentials of exogenous components: from children to adults[J].J Third Mil Med Univ,2017,39(17):1762-1767.
点击复制

事件相关电位外源性反应电位的发育规律(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
39卷
期数:
2017年第17期
页码:
1762-1767
栏目:
临床医学
出版日期:
2017-09-15

文章信息/Info

Title:
Developmental rules of auditory event-related potentials of exogenous components: from children to adults
作者:
陈晓轶曹洁蔡方成
重庆医科大学附属儿童医院神经内科;郑州儿童医院神经内科
Author(s):
CHEN Xiaoyi CAO Jie CAI Fangcheng

Department of Neurology, Children’s Hospital of Chongqing Medical University, Chongqing, 400014; Department of Neurology, Zhengzhou Children’s Hospital, Zhengzhou, Henan Province, 450003, China

关键词:
事件相关电位外源性电位听刺激成熟化
Keywords:
event-related potential exogenous potential auditory stimuli maturation
分类号:
R338.8; R741.044
文献标志码:
A
摘要:

目的     遵循2009年国际事件相关电位(event-related potentials,ERPs)指南,获取不同年龄组儿童听觉ERPs外源性反应电位主要波形潜伏期及波幅正常值,总结儿童听觉ERPs外源性反应电位发育规律和临床应用前景。方法      收集2008-2010年156名儿童与成人(儿童来源于重庆医科大学附属儿童医院儿童保健科门诊,骨科、普外科、呼吸及消化科呼吸道感染及消化道感染恢复期的住院患儿,成人为重庆医科大学健康在读大学生),分为3~5、>5~7、>7~9岁和>9~17岁组,以及22~29岁青年成人组。采用经典的“Oddball”模式进行听觉ERPs检测,每名受试者均进行2次以上测试,以判断波形的重复性。电位仪分别显示靶刺激和非靶刺激下ERPs叠加后图形,对ERPs各外源性成分P1、N1、P2和N2波形测量,包括波潜伏期及波幅。结果     靶刺激或非靶刺激诱发的外源性电位潜伏期均随年龄增长非匀速地成熟性缩短。无论靶刺激或非靶刺激,各年龄组的所有外源性电位波潜伏期均值中,95%以上都在2SD范围内。除N1波外,靶刺激下P1、P2、N2波幅随年龄增加呈先增高后降低趋势,成人和青少年期波幅反较儿童期低(P<0.05)。非靶刺激下,95%的健康成人甚至不能引出N2波形。所有外源性电位波幅均值皆伴有较大标准差,提示存在明显个体差异性。结论     ERPs外源性电位各波潜伏期同样随年龄规律性缩短,靶刺激较非靶刺激有更恒定的检测结果,可直接反映颞叶初级听觉皮层功能,且不受患者合作程度影响。

Abstract:

Objective      To investigate the normal waveform, lantency and amplitude of auditory eventrelated potentials (ERPs) of exogenous components in children at different ages, and summarize the developmental rules and clinical perspectives of exogenous ERPs according to the International Federation of Clinical Neurophysiology (IFCN) Recommended Standards in 2009. Methods       One hundred and thirty-six children aged from 3 to 17 years old (admitted in the departments from healthcare, orthopedics, general surgery, and respiratory and digestive diseases, and those recovered from respiratory infection and gastrointestinal infection), and healthy adults (from undergraduates of Chongqing medical university) were recruited in this study from 2008 to 2010. They were divided into 4 groups in accordance with their ages, that is, 3~5, >5~7, >7~9, and >9~17 years old groups, and adult group (22~29 years old). ERPs were recorded from the midline site (Cz) with classical auditory Oddball paradigm. Each subject was tested twice or more to determine waveform repeatability. The overlapped graphs of ERPs under target and standard stimuli were obtained in the potentiometer. The exogenous ERPs, including P1, N1, P2 and N2, lantency and amplitude were measured. Results       The latencies of exogenous ERPs under target and standard stimuli were shortened in a nonuniform manner with the increasing of age. No matter under target or standard stimuli, over 95% of mean latencies of exogenous ERPs were within the range of 2SD. In addition to N1 component, the amplitude of P1, P2 and N2 components induced by target stimulus were in a trend of increased first and then decreased with the increasing of age. Compared with the children, the amplitude was much lower in the adults and adolescents (P<0.05). The N2 component induced by target stimulus was absent among 95% healthy adults. The Standard deviations of amplitudes of exogenous components were great in all aged groups, indicating significant individual differences. Conclusion      The latencies of exogenous ERPs are shortened with the increasing of age. Target stimulus will produce more stable results than the standard stimulus, and the ERPs under target stimulus can reflect the primary auditory cortex function of temporal lobe, and are independent on patients’ cooperation.

参考文献/References:

[1]GALAS-ZGORZALEWICZ B. Applicability of P300 potential in evaluation of cognitive processes in children and adolescents[J]. Prz Lek, 2006, 63(Suppl 1): 1-3.
[2]DEREGNIER R A. Neurophysiologic evaluation of early cognitive development in highrisk infants and toddlers[J]. Ment Retard Dev Disabil Res Rev, 2005, 11(4): 317-324. DOI:10.1002/mrdd.20085.
[3]RUHNAU P, HERRMANN B, MAESS B, et al. Maturation of obligatory auditory responses and their neural sources: evidence from EEG and MEG[J]. Neuroimage, 2011, 58(2): 630-639. DOI:10.1016/j.neuroimage.2011.06.050.
[4]DUNCAN C C, BARRY R J, CONNOLLY J F, et al.Eventrelated potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400[J].Clin Neurophysiol,2009,120(11):1883-1908.DOI:10.1016/j.clinph.2009.07.045.
[5]PICTON T W, BENTIN S, BERG P,et al. Guidelines for using human eventrelated potentials to study cognition: recording standards and publication criteria[J]. Psychophysiology,2000, 37(2):127-152. DOI:10.1017/s004857720  0000305.
[6]SUTTON S, BRAREN M, ZUBIN J, et al.Evoked-potential correlates of stimulus uncertainty[J].Science, 1965, 150(3700): 1187-1188.DOI:10.1126/science.150.3700.1187.
[7]WUNDERLICH J L, CONEWESSON B K. Maturation of CAEP in infants and children: a review[J].Hear Res,2006,212(1/2):212-223. DOI:10.1016/j.heares.2005.11.008.
[8]PAUS T, COLLINS D L, EVANS A C,et al. Maturation of white matter in the human brain: a review of magnetic resonance studies[J].Brain Res Bull,2001,54(3): 255-266. DOI:10.1016/s0361-9230(00)00434-2.
[9]LUO J J, KHURANA D S, KOTHARE S V. Brainstem auditory evoked potentials and middle latency auditory evoked potentials in young children[J]. J Clin Neurosci, 2013, 20(3): 383-388. DOI:10.1016/j.jocn.2012.02.038.
[10]PURDY S C, SHARMA M, MUNRO K J, et al.Stimulus level effects on speech-evoked obligatory cortical auditory evoked potentials in infants with normal hearing[J].Clin Neurophysiol,2013,124(3):474-480. DOI:10.1016/j.clinph.2012.09.011.
[11]MAI X, XU L, LI M, et al.Auditory recognition memory in 2-month-old infants as assessed by event-related potentials[J].Dev Neuropsychol,2012,37(5):400-414. DOI: 10.1080/87565641.2011.650807.
 [12]PICTON T W, TAYLOR M J. Electrophysiological evaluation of human brain development[J].Dev Neuropsychol,2007,31(3):249-278.DOI:10.1080/8756564070122 8732.
[13]PUJOL J, LóPEZSALA A, SEBASTIáNGALLéS N,et al. Delayed myelination in children with developmental delay detected by volumetric MRI[J].Neuroimage,2004,22(2): 897-903. DOI:10.1016/j.neuroimage.2004.01.029.
[14]PONTON C W, EGGERMONT J J, KWONG B,et al.Maturation of human central auditory system activity: evidence from multichannel evoked potentials[J].Clin Neurophysiol, 2000,111(2): 220-236. DOI:10.1016/s1388-2457(99)00236-9.
[15]RANCE G,TOMLIN D.Maturation of the central auditory nervous system in children with auditory processing disorder[J]. Semin Hear, 2016, 37(1): 74-83.DOI:10.1055/s00351570328.
[16]SHARMA A, CARDON G.Cortical development and neuroplasticity in auditory neuropathy spectrum disorder[J].Hear Res,2015,330(Pt B):221-232. DOI:10.1016/j.heares.2015.06.001.
[17]LIGHTFOOT G.Summary of the N1-P2 cortical auditory evoked potential to estimate the auditory threshold in adults[J].Semin Hear,2016,37(1): 1-8.DOI:10.1055/-0035-1570334.
[18]SILVA L A, COUTO M I, MAGLIARO F C, et al.Cortical maturation in children with cochlear implants: correlation between electrophysiological and behavioral measurement[J].PLoS One,2017,12(2): e0171177. DOI:10.1371/journal.pone.0171177.
[19]LOPEZ-SOTO T,POSTIGO-MADUENO A,NUNEZABADES P. Evaluating long-latency auditory evoked potentials in the diagnosis of cortical hearing loss in children[J].Oxford Medical Case Reports,2016,2016(3):51-4.DOI:10.1093/omcr/omw011.
[20]WERNER K,FOSI T,BOYD S G, et al.Temporal lobe impairment in west syndrome: eventrelated potentialevidence[J]. Ann Neurol, 2015, 77(1): 47-57. DOI:10.1002/ana.24297.

更新日期/Last Update: 2017-09-05