[1]祥蔚,王晓东,李政言,等.IL-17A基因敲除减轻脂多糖诱导的脂肪肝小鼠肝脏炎症性损伤及其机制[J].第三军医大学学报,2017,39(16):1599-1605.
 XIANG Wei,WANG Xiaodong,LI Zhengyan,et al.IL-17A knockout alleviates lipopolysaccharide-induced steatotic liver injury in mice[J].J Third Mil Med Univ,2017,39(16):1599-1605.
点击复制

IL-17A基因敲除减轻脂多糖诱导的脂肪肝小鼠肝脏炎症性损伤及其机制(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
39卷
期数:
2017年第16期
页码:
1599-1605
栏目:
基础医学
出版日期:
2017-08-30

文章信息/Info

Title:
IL-17A knockout alleviates lipopolysaccharide-induced steatotic liver injury in mice
作者:
祥蔚王晓东李政言谢斌甘立霞
第三军医大学:基础医学院生物化学与分子生物学教研室,西南医院病理研究所;第三军医大学大坪医院野战外科研究所肝胆外科
Author(s):
XIANG Wei WANG Xiaodong LI Zhengyan XIE Bin GAN Lixia

Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, 400038; 3Department of Hepatobiliary Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China

关键词:
白介素17A脂肪肝脂多糖肝损伤过氧化氢代谢
Keywords:
IL-17A fatty liver LPS liver injury hydrogen peroxide metabolism
分类号:
R392-33;R392.3;R575.5
文献标志码:
A
摘要:

目的     在长程高脂膳食诱导的脂肪肝小鼠中,探讨白介素17A(interleukin 17A,IL-17A)基因缺陷对脂多糖(lipopolysaccharide,LPS)诱导的急性肝损伤的作用及其可能的机制。方法     利用 IL-17A基因敲除小鼠构建脂肪肝急性损伤模型,通过检测血浆中谷丙转氨酶(alanine transaminase,ALT)和谷草转氨酶(aspartate transaminase,AST)评估肝脏损伤情况,通过检测血浆中3种主要炎症因子TNF=α、IL=1β以及IL=6评估机体炎症水平,通过肝脏病理形态观测肝脏组织炎症细胞浸润和肝细胞损伤情况。通过对肝脏组织表达mRNA进行转录组学分析,寻找IL-17A基因敲除在高脂膳食(high fat diet,HF)+LPS诱导的肝损伤中的发挥作用的相关分子信号机制。结果     在高脂膳食喂养辅之以一次性LPS刺激下,IL17A基因敲除(gene knockout,KO)小鼠血浆中的ALT及AST水平显著降低(P<0.05);KO小鼠血浆中炎症因子水平显著降低(P<0.05),肝脏组织中浸润的炎症细胞显著减少(P<0.05)。肝脏转录组学分析结果显示,刺激后,KO小鼠下调的938个基因主要富集于氧化应激(P<0.01)、过氧化氢代谢途径(P<0.01)以及谷胱甘肽代谢途径(P<0.01)。Real-time PCR检测发现KO小鼠肝脏中与过氧化氢代谢相关的CAT、GPX1、IDH1、IDH2以及ME1基因的mRNA水平显著升高。同时,肝脏的氧化应激水平显著降低(P<0.05)。TUNEL检测进一步检测结果显示,KO小鼠肝脏凋亡细胞数量显著减少(P<0.01)。结论     IL-17A基因敲除可能通过促进过氧化氢代谢减轻LPS诱导的脂肪肝小鼠急性炎症性肝损伤。 

Abstract:

Objective      To investigate the effect of interleukin 17A (IL-17A)deficiency on lipopolysaccharide(LPS)-induced liver injury in mice with long-term high fat diet feeding and explore the underlying mechanism. Methods     C57BL/6 mice with IL-17A gene knockout (KO) and the wild-type (WT) littermates fed with high fat diet for 3 months were given an intraperitoneal injection of 4 mg/kg lipopolysaccharide (LPS). Plasma levels of alanine transaminase(ALT) and aspartate transaminase (AST) were detected to assess liver injury. Plasma TNF-α, IL-1β and IL-6 levels were determined to assess the severity of inflammation. Inflammatory cell infiltration in the liver and the impairment of hepatic cells were observed. The liver tissues from the WT and KO mice were subjected to transcriptomic analysis to study the effect of IL-17A deficiency on high-fat-diet- and LPS-induced liver injuries. Results     High fat diet feeding and LPS challenge significantly decreased the plasma ALT and AST levels in IL-17A KO mice (P<0.05). In the KO mice,the plasma levels of inflammatory cytokines and the number of infiltrating inflammatory cells in the liver were reduced significantly(P<0.05). Transcriptomic analysis showed that 938 genes were down-regulated in the KO mice after LPS stimulation, among which the genes involved in oxidation reduction process(P<0.01), hydrogen peroxide metabolic process (P<0.01), and glutathione metabolic process (P<0.01) showed the most significant decreases. Real-time PCR demonstrated that a panel of metabolic enzymes participated in hydrogen peroxide detoxification, such as CAT, GPX1, IDH1, IDH2 and ME1, which were highly expressed in the KO mice (P<0.05). The levels of reactive oxygen species (ROS) were significantly decreased in the liver of KO mice (P<0.05). TUNEL assay indicated that the number of apoptotic cells was significantly reduced in the liver of KO mice(P<0.05). Conclusion      IL-17A deficiency may alleviate LPS-induced acute inflammatory injury in fatty liver mice by reducing hepatic ROS accumulation.

参考文献/References:

[1]LI Z, XUE J, CHEN P, et al. Prevalence of nonalcoholic fatty liver disease in mainland of China: a meta-analysis of published studies[J]. J Gastroenterol Hepatol, 2014, 29(1): 42-51. DOI: 10.1111/jgh.12428.
[2]FAN J G. Epidemiology of alcoholic and nonalcoholic fatty liver disease in China[J]. J Gastroenterol Hepatol, 2013, 28 (Suppl 1): 11-17. DOI: 10.1111/jgh.12036.
[3]OO Y H, BANZ V, KAVANAGH D, et al. CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver[J]. J Hepatol, 2012, 57(5): 1044-1051. DOI: 10.1016/j.jhep.2012.07.008.
[4]ZHANG J Y, ZHANG Z, LIN F, et al. Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B[J]. Hepatology, 2010, 51(1): 81-91. DOI: 10.1002/hep.23273.
[5]TANG Y, BIAN Z, ZHAO L, et al. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease[J]. Clin Exp Immunol, 2011, 166(2): 281-290. DOI: 10.1111/j.1365-2249.2011.04471.x.
[6]HARLEY I T, STANKIEWICZ T E, GILES D A, et al. IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice[J]. Hepatology, 2014, 59(5): 1830-1839. DOI: 10.1002/hep.26746.
[7]ZHANG L,ZHANG F K. Advances in research of nonalcoholic fatty liver disease[J].World Chin J Digestol, 2016(27): 3860-3869. DOI: 10.11569/wcjd.v24.i27.3860.
[8]DAY C P, JAMES O F. Steatohepatitis: a tale of two “hits”?[J]. Gastroenterology, 1998, 114(4): 842-845.
[9]TESSARI P, CORACINA A, COSMA A, et al. Hepatic lipid metabolism and nonalcoholic fatty liver disease[J]. Nutr Metab Cardiovasc Dis, 2009, 19(4): 291-302. DOI: 10.1016/j.numecd.2008.12.015.
[10]LAMBERT J E, RAMOSROMAN M A, Browning J D, et al. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease[J]. Gastroenterology, 2014, 146(3): 726-735. DOI: 10.1053/j.gastro.2013.11.049.
[11]KOUKIAS N, BUZZETTI E, TSOCHATZIS E A. Intestinal hormones, gut microbiota and nonalcoholic fatty liver disease[J]. Minerva Endocrinologica, 2017. 42 (2): 184-194.
[12]PATTERSON R E, KALAVALAPALLI S, WILLIAMS C M, et al. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity[J]. Am J Physiol Endocrinol Metab, 2016, 310(7): E484-E494. DOI: 10.1152/ajpendo.00492.2015.
[13]SUNNY N E, BRIL F, CUSI K. Mitochondrial adaptation in nonalcoholic fatty liver disease: novel mechanisms and treatment strategies[J]. Trends Endocrinol Metab, 2016,28(4): 250-260. DOI: 10.1016/j.tem.2016.11.006.
[14]BOZAYKUT P, SAHIN A, KARADEMIR B, et al. Endoplasmic reticulum stress related molecular mechanisms in nonalcoholic steatohepatitis[J]. Mech Ageing Dev, 2016, 157: 17-29. DOI: 10.1016/j.mad.2016.07.001.
[15]KIRPICH I A, MARSANO L S, MCCLAIN C J. Gutliver axis, nutrition, and nonalcoholic fatty liver disease[J]. Clin Biochem, 2015, 48(13/14): 923-930. DOI: 0.1016/j.clinbiochem.2015.06.023.
[16]LEAMY A K, EGNATCHIK R A, SHIOTA M, et al. Enhanced synthesis of saturated phospholipids is associated with ER stress and lipotoxicity in palmitate treated hepatic cells[J]. J Lipid Res, 2014, 55(7): 1478-1488. DOI: 10.1194/jlr.M050237.
[17]DOWMAN J K, TOMLINSON J W, Newsome P N. Pathogenesis of nonalcoholic fatty liver disease[J]. QJM, 2010, 103(2): 71-83. DOI: 10.1093/qjmed/hcp158.
[18]TSUKAMOTO H, RIPPE R, NIEMELA O, et al. Roles of oxidative stress in activation of Kupffer and Ito cells in liver fibrogenesis[J]. J Gastroenterol Hepatol, 1995, 10 (Suppl 1): S50-S53.
[19]TILG H, DIEHL A M. Cytokines in alcoholic and nonalcoholic steatohepatitis[J]. N Engl J Med, 2000, 343(20): 1467-1476. DOI: 10.1056/NEJM200011163432007.
[20]LEMMERS A, MORENO C, GUSTOT T, et al. The interleukin-17 pathway is involved in human alcoholic liver disease[J]. Hepatology, 2009, 49(2): 646-657. DOI: 10.1002/hep.22680.
[21]WEAVER C T, HARRINGTON L E, MANGAN P R, et al. Th17: an effector CD4 T cell lineage with regulatory T cell ties[J]. Immunity, 2006, 24(6): 677-688. DOI: 10.1016/j.immuni.2006.06.002.

相似文献/References:

[1]蔡小丽,徐虓,张希.重度脂肪肝患者应用急性等容血液稀释技术术中凝血功能变化的观察[J].第三军医大学学报,2015,37(16):1695.
[2]谭华炳,朱德文,谢杏榕,等.非酒精性脂肪性肝病兔脂肪肝程度与肝组织硫化氢浓度的关系[J].第三军医大学学报,2010,32(22):2440.
[3]万婧,糜漫天.运动对高脂喂食小鼠肠黏膜屏障功能和肝脏脂质蓄积及炎症的影响[J].第三军医大学学报,2016,38(05):437.
 Wan Jing,Mi Mantian.Effects of exercise on gut barrier function as well as hepatic inflammation and fat accumulation in high-fat fed mice[J].J Third Mil Med Univ,2016,38(16):437.
[4]马娜,傅念.比伐卢定逆转大鼠非酒精性脂肪肝的实验研究[J].第三军医大学学报,2013,35(24 ):2671.
 Ma Na,Fu Nian.Effect of bivalirudin on reversing nonalcoholic fatty liver in rats[J].J Third Mil Med Univ,2013,35(16):2671.
[5]邱蕾,钟晓妮,宋文丰,等.简易体脂指标对脂肪肝超声诊断的预测价值评价[J].第三军医大学学报,2011,33(23):2532.
[6]胡辂,陈东风,史洪涛,等.肝细胞色素P4502E1在大鼠非酒精性脂肪肝发生中的作用[J].第三军医大学学报,2004,26(17):0.[doi:10.16016/j.1000-5404.2004.17.020 ]
 HU Lu,CHEN Dong feng,SHI Hong tao.[J].J Third Mil Med Univ,2004,26(16):0.[doi:10.16016/j.1000-5404.2004.17.020 ]
[7]贾树蓉,江正辉,阎晓初,等.酒精性脂肪肝与肝硬变化的超声诊断[J].第三军医大学学报,1995,17(04):0.[doi:10.16016/j.1000-5404.1995.04.021 ]
[8]蔡绍丽.某军队医院医务人员甘油三酯升高及脂肪肝患病情况分析[J].第三军医大学学报,2003,25(04):0.[doi:10.16016/j.1000-5404.2003.04.043 ]

更新日期/Last Update: 2017-08-18