[1]肖锐,李芬,张竞文,等.丙泊酚对新生小鼠下丘脑室旁核神经元及下丘脑小胶质细胞的影响[J].第三军医大学学报,2017,39(10):990-995.
 Xiao Rui,Li Fen,Zhang Jingwen,et al.Effect of propofol on hypothalamic paraventricular nucleus neurons and microglia in neonatal mice[J].J Third Mil Med Univ,2017,39(10):990-995.
点击复制

丙泊酚对新生小鼠下丘脑室旁核神经元及下丘脑小胶质细胞的影响(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
39卷
期数:
2017年第10期
页码:
990-995
栏目:
基础医学
出版日期:
2017-05-30

文章信息/Info

Title:
Effect of propofol on hypothalamic paraventricular nucleus neurons and microglia in neonatal mice
作者:
肖锐李芬张竞文余丹景胜杨天德
第三军医大学新桥医院麻醉科;第三军医大学心理学院发育神经心理学教研室
Author(s):
Xiao Rui Li Fen Zhang Jingwen Yu Dan Jing Sheng Yang Tiande

Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037; Department of Developmental Neuropsychology, College of Psychology, Third Military Medical University, Chongqing, 400038, China

关键词:
丙泊酚下丘脑神经毒性动物 新生
Keywords:
propofol hypothalamus neurotoxicity animals newborn
分类号:
R322.81; R965.3; R971.2
文献标志码:
A
摘要:

目的研究丙泊酚对新生小鼠下丘脑区域神经元激活及小胶质细胞活化水平的影响,并探讨与丙泊酚神经毒性的相关性。方法15只同窝7 d龄(postnatal day 7,P7)C57小鼠按随机数字表法分为3组(n=5):对照组、丙泊酚低剂量组、丙泊酚高剂量组。P7时,丙泊酚低、高剂量组小鼠分别接受丙泊酚30、60 mg/kg腹腔注射,对照组注射同等体积的脂肪乳溶剂。24 h后(P8)处死小鼠收取脑标本,采用免疫组织化学方法检测下丘脑C-Fos、精氨酸加压素(arginine vasopressin, AVP)、糖皮质激素受体(glucocorticoid receptor, GR)及小胶质细胞标志物离子钙接头分子蛋白1(ionized calcium binding adapter molecule 1, Iba1)的表达,Western blot测定AVP及GR的表达。结果与对照组(9.95±1.51)相比,丙泊酚低剂量组(14.75±1.39)、丙泊酚高剂量组(24.00±5.25)室旁核C-Fos阳性细胞数量均明显增多(P<0.05,P<0.01),且高剂量组相对低剂量组增多(P<0.01);对照组(14.94±3.39)与低剂量组(19.63±3.70)室旁核表达AVP阳性细胞数量无明显差异,而高剂量组(23.38±2.29)中AVP阳性细胞数量对比对照组明显增加(P<0.01),且蛋白表达上调;高剂量组(37.38±3.17)下丘脑室旁核GR表达相对对照组(27.38±2.17)及低剂量组(31.38±2.39)均明显上调(P<0.01,P<0.05),对照组和低剂量组间无差异;与对照组相比,低剂量组、高剂量组下丘脑背内侧区、腹内侧区、外侧区Iba1标记的小胶质细胞数量均明显减少。结论丙泊酚激活新生小鼠下丘脑室旁核神经元,致下丘脑精氨酸加压素和糖皮质激素受体表达上调,并抑制小胶质细胞活化水平,影响程度与剂量相关。

Abstract:

ObjectiveTo investigate the effects of propofol on neuronal and microglia activation in the hypothalamus of neonatal mice and the impact of the neurotoxicity of propofol on the neurons and microglia. MethodsFifteen healthy neonatal (7-day-old) C57 mice from the same litter were randomly divided into control group, low-dose propofol group and high-dose propofol group(n=5). On postnatal day 7, the mice in the low- and high-dose propofol treatment groups received intraperitoneal injection of propofol at 30 mg/kg and 60 mg/kg, respectively, and the control mice were treated with 10% intralipid of the same volume. Twenty-four hours after the injections, the mice were sacrificed and the cerebrum was collected for immunohistochemistry to detect the expression of C-Fos, arginine vasopressin (AVP), glucocorticoid receptor(GR) and ionized calcium binding adapter molecule 1 (Iba1) in the hypothalamus, and Western blotting was used for quantitative analysis of AVP and GR expressions. ResultsThe C-Fos-positive cells in the paraventricular nucleus (PVN) were significantly increased in both the low-dose propofol group (14.75±1.39, P<0.05) and high-dose propofol group (24.00±5.25, P<0.01) as compared with the control group (9.95±1.51), and the cell number was significantly greater in the high-dose group than in the low-dose group (P<0.01). The number of AVP-positive cells in the hypothalamus did not differ significantly between the control group (14.94±3.39) and the low-dose group (19.63±3.70) but increased significantly in the high-dose group (23.38±2.29, P<0.01 vs control), which also showed an up-regulated expression of AVP protein. GR expression was significantly higher in high-dose propofol group (37.38±3.17) than in the control group (27.38±2.17, P<0.01) and low-dose group (31.38±2.39, P<0.05). Compared with those in the control group, the numbers of Iba1-positive microglia in the dorsomedial, ventromedial and lateral areas of the hypothalamus were all decreased in the 2 propofol treatment groups. ConclusionPropofol exposure in early life causes neuronal activation in the PVN, up-regulation of AVP and GR in the hypothalamus and inhibition of microglia activation, and these effects are related with the level of the exposure doses.
 

参考文献/References:

[1]Sinner B, Becke K, Engelhard K. General anaesthetics and the developing brain: an overview[J]. Anaesthesia, 2014, 69(9): 1009-1022. DOI: 10.1111/anae.12637.
[2]Han D, Jin J, Fang H, et al. Longterm action of propofol on cognitive function and hippocampal neuroapoptosis in neonatal rats[J]. Int J Clin Exp Med, 2015, 8(7): 10696-10704.
[3]Dimaggio C, Sun L S, Li G. Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort[J]. Anesth Analg, 2011, 113(5): 1143-1151. DOI: 10.1213/ANE.0b013e3182147f42.
[4]Wilder R T, Flick R P, Sprung J, et al. Early exposure to anesthesia and learning disabilities in a populationbased birth cohort[J]. Anesthesiology, 2009, 110(4): 796-804. DOI: 10.1097/01.anes.0000344728.34332.5d.
[5]Huang J, Jing S, Chen X, et al. Propofol Administration During Early Postnatal Life Suppresses Hippocampal Neurogenesis[J]. Molecular Neurobiology, 2016, 53(2): 1031-1044. DOI: 10.1007/s1203501490527.
[6]余丹, 景胜, 黄静, 等. 丙泊酚对发育期小鼠大脑梨状皮层神经前体细胞增殖的影响[J]. 第三军医大学学报, 2016, 38(7): 731-736. DOI: 10.16016/j.10005404.201509051.
Yu D, Jing S, Huang J, et al. Effect of propofol on proliferation in neural precursor cells of developing mouse piriform cortex[J]. J Third Mil Med Univ, 2016, 38(7): 731-736. DOI: 10.16016/j.10005404.201509051.
[7]Zhang H H, Zheng C, Wang B A, et al. Inhibitory effects of propofol on excitatory synaptic transmission in supraoptic nucleus neurons in vitro[J]. Sheng Li Xue Bao, 2015, 67(6): 583-590.
[8]Shirasaka T, Yoshimura Y, Qiu D L, et al. The effects of propofol on hypothalamic paraventricular nucleus neurons in the rat[J]. Anesth Analg, 2004, 98(4): 1017-1023, table of contents. DOI: 10.1213/01.ane.0000107960.89818.35.
[9]Bakos J, Zatkova M, Bacova Z, et al. The Role of Hypothalamic Neuropeptides in Neurogenesis and Neuritogenesis[J]. Neural Plast, 2016, 2016: 3276383. DOI: 10.1155/2016/3276383.
[10]Dobbing J, Sands J. Comparative aspects of the brain growth spurt[J]. Early Hum Dev, 1979, 3(1): 79-83. DOI: 10.1016/03783782(79)900227.
[11]Yu D, Jiang Y, Gao J, et al. Repeated exposure to propofol potentiates neuroapoptosis and longterm behavioral deficits in neonatal rats[J]. Neurosci Lett, 2013, 534: 41-46. DOI: 10.1016/j.neulet.2012.12.033.
[12]Lukas M, Neumann I D. Oxytocin and vasopressin in rodent behaviors related to social dysfunctions in autism spectrum disorders[J]. Behav Brain Res, 2013, 251: 85-94. DOI: 10.1016/j.bbr.2012.08.011.
[13]CesarTognoli L M, Salamoni S D, Tavares A A, et al. Effects of spider venom toxin PWTXI (6Hydroxytrypargine) on the central nervous system of rats[J]. Toxins (Basel), 2011, 3(2): 142-162. DOI: 10.3390/toxins3020142.
[14]Rotondo F, Butz H, Syro L V, et al. Arginine vasopressin (AVP): a review of its historical perspectives, current research and multifunctional role in the hypothalamohypophysial system[J]. Pituitary, 2016, 19(4): 345-355. DOI: 10.1007/s1110201507030.
[15]De Kloet E R, Vreugdenhil E, Oitzl M S, et al. Brain corticosteroid receptor balance in health and disease[J]. Endocr Rev, 1998, 19(3): 269-301. DOI: 10.1210/edrv.19.3.0331.
[16]Vyas S, Maatouk L. Contribution of glucocorticoids and glucocorticoid receptors to the regulation of neurodegenerative processes[J]. CNS Neurol Disord Drug Targets, 2013, 12(8): 1175-1193. DOI: 10.2174/187152731131200125.
[17]Kurosawa S, Kato M. Anesthetics, immune cells, and immune responses[J]. J Anesth, 2008, 22(3): 263-277. DOI: 10.1007/s0054000806262.
[18]Luo T, Wu J, Kabadi S V, et al. Propofol limits microglial activation after experimental brain trauma through inhibition of nicotinamide adenine dinucleotide phosphate oxidase[J]. Anesthesiology, 2013, 119(6): 1370-1388. DOI: 10.1097/ALN.0000000000000020.

相似文献/References:

[1]王旭辉,张岫竹,王伍超,等.大鼠下丘脑神经元培养的新方法[J].第三军医大学学报,2009,31(17):1709.
[2]戴若以,顾小红,张云东,等.阻断促肾上腺皮质激素释放激素1受体对慢性束缚应激致大鼠类抑郁症状的改善[J].第三军医大学学报,2015,37(22):2273.
 Dai Ruoyi,Gu Xiaohong,Zhang Yundong,et al.Blocking corticotropin-releasing hormone 1 receptor regulates expression of BDNF and GAP-43 in hypothalamus of depression rats induced by chronic restraint stress[J].J Third Mil Med Univ,2015,37(10):2273.
[3]田秀灵,糜漫天,韦娜,等.模拟高原急性缺氧对大鼠下丘脑神经肽Y受体Y1 mRNA表达的影响[J].第三军医大学学报,2005,27(23):2328.
[4]文玲,邓永兵,朱小云,等.5-羟色胺转运体敲除小鼠在高架十字迷宫中下丘脑CRF mRNA表达的变化[J].第三军医大学学报,2014,36(18):1876.
 Wen Ling,Deng Yongbing,Zhu Xiaoyun,et al.Alteration of CRF mRNA expression in hypothalamus of SERT-knockout mice exposed to elevated plus maze[J].J Third Mil Med Univ,2014,36(10):1876.
[5]汪冬,杨帆,黄庆愿,等.缺氧对大鼠下丘脑Ⅰ型大麻素受体表达和摄食量的影响[J].第三军医大学学报,2016,38(16):1820.
 Wang Dong,Yang Fan,Huang Qingyuan,et al.Effect of hypoxia on hypothalamic cannabinoid receptor type Ⅰ expression and food intake in rats[J].J Third Mil Med Univ,2016,38(10):1820.
[6]熊加祥,黎海蒂,龚发云,等.严重烧伤影响大鼠脑内c-fos表达和Som-LI与脑水肿的关系[J].第三军医大学学报,2002,24(07):0.[doi:10.16016/j.1000-5404.2002.07.004 ]
 XIONG Jia xiang,LI Hai di,Gong Fa yun,et al.[J].J Third Mil Med Univ,2002,24(10):0.[doi:10.16016/j.1000-5404.2002.07.004 ]
[7]范晓棠,阮怀珍,张金海,等.急性低温低氧对大鼠下丘脑NOS及c-fos表达的影响[J].第三军医大学学报,1999,21(04):0.[doi:10.16016/j.1000-5404.1999.04.007 ]
 Fan Xiaotang,Ruan Huaizhen,Zhang Jinhai,et al.[J].J Third Mil Med Univ,1999,21(10):0.[doi:10.16016/j.1000-5404.1999.04.007 ]
[8]王兴友,钱桂生,毛宝龄,等.急性肺损伤大鼠下丘脑内c-fos基因的表达[J].第三军医大学学报,1997,19(06):0.[doi:10.16016/j.1000-5404.1997.06.008 ]
 Wang Xingyou,Qian Guisheng,Mao Baolin.[J].J Third Mil Med Univ,1997,19(10):0.[doi:10.16016/j.1000-5404.1997.06.008 ]
[9]张云东,朱佩芳,王正国,等.大鼠严重创伤后早期下丘脑CRH的表达[J].第三军医大学学报,2003,25(06):0.[doi:10.16016/j.1000-5404.2003.06.012 ]
 ZHANG Yun dong,ZHU Pei fang,WANG Zheng guo,et al.[J].J Third Mil Med Univ,2003,25(10):0.[doi:10.16016/j.1000-5404.2003.06.012 ]
[10]张云东,朱佩芳,王正国,等.大鼠严重创伤后早期下丘脑c-fos和CRH mRNA的表达[J].第三军医大学学报,2003,25(11):0.[doi:10.16016/j.1000-5404.2003.11.012 ]
 ZHANG Yun dong,ZHU Pei fang,WANG Zheng guo,et al.[J].J Third Mil Med Univ,2003,25(10):0.[doi:10.16016/j.1000-5404.2003.11.012 ]

更新日期/Last Update: 2017-05-22