[1]斯丹,杨致邦,蒋任举,等.具有高效降解地塞米松能力的伯克霍尔德菌CQ001株的分离及功能基因组学分析[J].第三军医大学学报,2017,39(13):1352-1359.
 SI Dan,YANG Zhibang,JANG Renju,et al.Isolation and functional genomic analysis of a strain of Burkholderia CQ001 degrading dexamethasone[J].J Third Mil Med Univ,2017,39(13):1352-1359.
点击复制

具有高效降解地塞米松能力的伯克霍尔德菌CQ001株的分离及功能基因组学分析(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
39卷
期数:
2017年第13期
页码:
1352-1359
栏目:
基础医学
出版日期:
2017-07-15

文章信息/Info

Title:
Isolation and functional genomic analysis of a strain of Burkholderia CQ001 degrading dexamethasone
作者:
斯丹杨致邦蒋任举张进熊玉霞马廉举王毅
重庆医科大学基础医学院病原生物学教研室;重庆医科大学药学实验教学中心;重庆医科大学基础医学院免疫学教研室
Author(s):
SI Dan YANG Zhibang JANG Renju ZHANG Jin XIONG Yuxia MA Lianju WANG Yi

Department of Pathogenic Biology, Laboratory of Immunology, College of Basic Medical Sciences, Center of Pharmacy Experimental Teaching, Chongqing Medical University, Chongqing, 400016, China

关键词:
地塞米松降解伯克霍尔德菌全基因组
Keywords:
dexamethasone degradation Burkholderia whole genome sequencing
分类号:
R123.3; R378.99; R394-33
文献标志码:
A
摘要:

目的        研究细菌对地塞米松类甾体激素的降解作用及其分子机制,为构建清除水环境医源性地塞米松类药物污染的工程菌奠定基础。方法        采用富集培养法从医院废水中分离降解地塞米松的细菌,采用固相萃取-高效液相色谱(HPLC)法检测细菌对地塞米松的降解效能,通过16S rDNA序列测定进行鉴定。用Illumina Hiseq4000结合第三代测序技术对降解菌的全基因组测序,并进行序列组装、注释和分析,对降解地塞米松相关基因进行RT-qPCR验证。结果       分离到1株对地塞米松有较高降解作用的细菌,经鉴定属于伯克霍尔德菌属(Burkholderia),命名为Burkholderia sp.CQ001。该菌对地塞米松磷酸钠及地塞米松的降解率分别为84.8%和77.11%。全基因组测序表明Burkholderia sp.CQ001包含2条染色体和4个巨型质粒,与代谢相关基因大部分集中在2号染色体上,共3 260 157 bp。生物信息学分析表明,该菌含有甾体代谢通路中许多重要酶类的编码基因,其中与地塞米松降解相关的有ABC转运子,3-甾酮-9α-脱氢酶等,这些基因在以地塞米松磷酸钠为碳源的培养条件下表达量不同程度地高于以蔗糖为碳源的培养条件。结论         Burkholderia sp.CQ001是一株具有强大的代谢功能和代谢途径丰富的细菌,具有降解地塞米松类甾体激素的性能,该菌株为后续研究甾体激素的降解机制和构建清除水环境医源性地塞米松类药物污染的工程菌提供了菌种。

Abstract:

Objective          To investigate the degradation effect and molecular mechanism of bacteria on dexamethasone steroid hormones, in order to lay the foundation for the construction of engineering bacteria to eliminate the pollution of iatrogenic dexamethasone drugs in water environment. Methods        By enrichment culture method, dexamethasone degradation bacteria were isolated from hospital waste water. The degradation rates of dexamethasone were determined by using high performance liquid chromatography (HPLC). The dexamethasone degradation bacterium was identified with 16S rDNA sequencing. The whole genome sequencing was performed using Illumina Hiseq4000 combined with third generation sequencing technology, and sequence assembly, annotation and analysis. Some degradation of dexamethasone related genes were further verified by real time RT-qPCR. Results         A strain of bacteria with higher degradation to dexamethasone were isolated, and then identified as Burkholderia, which was named Burkholderia sp.CQ001. The degradation rates were 84.8% to dexamethasone sodium phosphate and 77.11% to dexamethasone. Genome sequencing results demonstrated that the bacterium contained 2 chromosomes and 4 giant plasmids. Most of the metabolic related genes were concentrated in chromosome 2, accounting for 3 260 157 bp. Bioinformatic analysis results showed that Burkholderia sp.CQ001 had some significant genes that encoded enzymes working in the steroid degradation pathways, including asABC transporter, 3-ketosteroid-9alphamonooxygenase,etc, which are involved in the dexamethasone degradation. The expression levels of these genes were higher when Burkholderia sp.CQ001was grown in a medium with dexamethasone sodium phosphate as the unique carbon source than in a medium with glucose as the unique carbon source. Conclusion         Burkholderia sp.CQ001 is a strain of bacterium with strong metabolic function and metabolic pathway. It has the properties of degrading dexamethasone steroid hormones. Our findings may provide new strain and much evidence for the further studies concerning dexamethasone degradation mechanisms and establishment of bioremediation engineering bacteria for eliminating dexamethasone pollution.

参考文献/References:

[1]DONIA M, MANGANO K, QUATTROCCHI C, et al. Specific and Strain-Independent Effects of Dexamethasone in the Prevention and Treatment of Experimental Autoimmune Encephalomyelitis inRodents[J].ScandinavianJournalofImmunology,2010,72(5):396-407.DOI:10.1111/j.13653083.2010.02451.x.
[2]CHANG H, HU J, SHAO B.Occurrence of natural and synthetic glucocorticoids in sewage treatment plants and receiving river waters[J].Environ Sci Technol,2007,41(10):3462-8. DOI:10.1021/es062746o.
[3]SC V D L, HERINGA M B, MAN H Y, et al. Detection of multiple hormonal activities in wastewater effluents and surface water, using a panel of steroid receptor CALUX bioassays[J]. Environmental Science & Technology, 2008, 42(15):5814-20.DOI:10.1021/es702897y.
[4]SCHRIKS M, VAN LEERDAM J A, VAN DER LINDEN S C, et al. High-resolution mass spectrometric identification and quantification of glucocorticoid compounds in various wastewaters in the Netherlands[J]. Environ Sci Technol, 2010,44(12):4766-4774.DOI:10.1021/es100013x.
[5]石中全,周裕珍,杨致邦等.废水中地塞米松污染的探讨[J].中国医药指南,2012,10(9):319-321.DOI:10.3969/j.issn.1671-8194.2012.09.258.
SHI Z Q, ZHOU Y Z, YANG Z B, et al.Approach the Contamination of Dexamethasone in the Effluent Water [J]. Guide of China Medicine, 2012, 10(9):319-321.DOI:10.3969/j.issn.16718194.2012.09.258.
[6]TAKAHASHI T, NAKAMURA Y, TSUYA A, et al. Pharmacokinetics of aprepitant and dexamethasone after administration of chemotherapeutic agents and effects of plasma substance P concentration on chemotherapy-induced nausea and vomiting in Japanese cancer patients[J]. Cancer Chemotherapy and Pharmacology, 2011, 68(3):653-659.DOI:10.1007/s00280-010-1519-2.
[7]卢其腾, 农小连, 吴家昌,等. 去势联合地塞米松建立大鼠骨质疏松模型的研究[J]. 中国骨质疏松杂志, 2015(1):34-38.DOI:10.3969/j.issn.1006-7108.2015.01.008.
LU Q T, LONG X L,WU J C,et al.Study of the establishment of rat osteoporosis model using ovariectomy combined with dexamethasone[J]. Chinese Journal of Osteoporosis,2015(1):34-38.DOI:10.3969/j.issn.1006-7108.2015.01.008.
[8]杨茜, 李晓愚, 斯丹,等. 饮水中地塞米松污染对小鼠肠道菌群的影响[J]. 南方医科大学学报, 2016(2):238-243.DOI:10.3969/j.issn.1673-4254.2016.02.16.
YANG Q, LI X Y,SI D,et al.Effect of dexamethasone contamination in drinking water on intestinal flora in mice[J].Journal of Southern Medical University,2016(2):238-243.DOI:10.3969/j.issn.16734254.2016.02.16.
[9]黄卫, 宋海燕. 环境中类固醇雌激素的转化机制研究进展[J]. 广东化工, 2009, 36(7):71-73.DOI:10.3969/j.issn.1007-1865.2009.07.027.
HUANG W,SONG H Y.Process of the Transform Mechanisms of Steroid Estrogens in Environments[J].Guangdong Chemical Industry, 2009, 36(7):71-73.DOI: 10.3969/j.issn.1007-865.2009.07.027.
[10]GARC-A J L, UH-A I, GAL-N B. Catabolism and biotechnological applications of cholesterol degrading bacteria[J]. Microbial Biotechnology, 2012, 5(6):679-699. DOI:10.1111/j.17517915.2012.00331.x.
[11]WANG Y,YANG Z B, ZHU L L,et al. Isolation and identification of dexamethasone sodium phosphate degrading Pseudomonas alcaligenes.[J]. Journal of Basic Microbiology, 2015, 55(2):262-268.DOI: 10.1002/jobm.201300912.
[12]LIVAK K J, SCHMITTGEN T D. Analysis of Relative Gene Expression Data Using RealTime Quantitative PCR and the 2 -ΔΔCT, Method[J]. Methods, 2001, 25(4):402-408. DOI:10.1006/meth.2001.1262.
[13]YAM K C, D’ANGELO I, KALSCHEUER R, et al. Studies of a RingCleaving Dioxygenase Illuminate the Role of Cholesterol Metabolism in the Pathogenesis of Mycobacterium tuberculosis[J]. Plos Pathogens, 2009, 5(3):e1000344.DOI:10.1371/journal.ppat.1000344.
[14]OUELLET H, JOHNSTON J B, DE MONTELLANO P R. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis[J]. Trends Microbiol, 2011, 19(11):530-539. DOI:10.1016/j.tim.2011.07.009.
[15]KENDALL S L, WITHERS M, SOFFAIR C N, et al. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis, and Mycobacterium tuberculosis[J]. Molecular Microbiology, 2007, 65(3):684-699.DOI:10.1111/j.13652958.2007.05827.x.
[16]LEMAIRE B, CHIMPHANGO S, STIRTON C, et al. Biogeographical patterns of legumenodulating Burkholderia: from African Fynbos to continental scales[J]. Applied & Environmental Microbiology, 2016, 82(17):5099-115.DOI: 10.1128/AEM.00591-16.
[17]HAMID S, BAE W, KIM S, et al. Enhancing cometabolic degradation of trichloroethylene with toluene using Burkholderia vietnamiensis G4 encapsulated in polyethylene glycol polymer[J]. Environmental Technology, 2014, 35(12):1470-1477.DOI:10.1080/09593330.2013.871045.
[18]CHEN W T, SHEN S M, SHU C M. Application of ethylene diamine tetra acetic acid degrading bacterium Burkholderia cepacia on biotreatment process[J]. Bioresource Technology, 2015, 193:357-362.DOI:10.1016/j.biortech.2015.06.099.
[19]CHAIN P S G, DENEF V J, KONSTANTINIDIS K T, et al. Burkholderia xenovorans LB400 harbors a multi-replicon, 9-73-Mbp genome shaped for versatility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(42):15280-15287.DOI:10.1073/pnas.0606924103.
[20]MALAVIYA A, GOMES J. Androstenedione production by biotransformation of phytosterols[J]. Bioresource Technology, 2008, 99(15):6725-6737.DOI:10.1016/j.biortech.2008.01.039.
[21]SRIPALAKIT P, WICHAI U, Saraphanchotiwitthaya A. Biotransformation of various natural sterols to androstenones by Mycobacterium, sp. and some steroidconverting microbial strains[J]. Journal of Molecular Catalysis B Enzymatic, 2006, 41(1-2):49-54.DOI:10.1016/j.molcatb.2006.04.007.
[22]VASILEVSKAYA A V, YANTSEVICH A V, SERGEEV G V, et al. Identification of Mycobacterium tuberculosis, enzyme involved in vitamin D and 7dehydrocholesterol metabolism[J]. Journal of Steroid Biochemistry & Molecular Biology, 2016, S0960-0760(16) 30151-0. DOI:10.1016/j.jsbmb.2016.05.021.
[23]GARC-A J L, UH-A I, GARC-A E, et al. Bacterial degradation of cholesterol and other contaminant steroids[M]// Microbial Bioremediation of Nonmetals: Current Research. 2011:23-43.
[24]MOHN W W, VAN DER GEIZE R, STEWART G R, et al. The Actinobacterial mce4 Locus Encodes a Steroid Transporter[J].J Biol Chem,2008,283(51):35368-35374. DOI:10.1074/jbc.M805496200.
[25]UHA I, GALN B, MORALES V, et al. Initial step in the catabolism of cholesterol by Mycobacterium smegmatis,mc2155[J].Environmental Microbiology, 2011,13(4):943-959.DOI: 10.1111/j.14622920.2010.02398.x.
[26]DONOVA M V, EGOROVA O V. Microbial steroid transformations: current state and prospects[J]. Applied Microbiology and Biotechnology, 2012,94(6):1423-1447.DOI:10.1007/s00253-012-4078-0.
[27]DRESEN C,  LIN L Y, D’ANGELO I,et al. A Flavin-dependent Monooxygenase from Mycobacterium tuberculosis Involved in Cholesterol Catabolism[J]. J Biol Chem, 2010, 285(29):22264-22275.DOI:10.1074/jbc.M109.099028.
[28]UHA I, GALN B, MEDRANO F J, et al. Characterization of the KstR-dependent promoter of the gene for the first step of the cholesterol degradative pathway in Mycobacterium smegmatis.[J]. Microbiology, 2011, 157(9):2670-80.DOI:10.1099/mic.0.0492130.

相似文献/References:

[1]王炜,李牧,刘绍虔,等.消旋聚乳酸输尿管支架管在家犬体内的降解变化及输尿管病理学表现[J].第三军医大学学报,2010,32(09):959.
 Wang Wei,Li Mu,Liu Shaoqian,et al.In vivo biodegradation of poly-DL-lactic acid ureteral stent in canine and pathological change in its ureter[J].J Third Mil Med Univ,2010,32(13):959.
[2]商旭敏,金中秋,周和政,等.壳聚糖膜在兔眼巩膜瓣下的降解及对眼内压的影响[J].第三军医大学学报,2007,29(04):338.
 SHANG Xu-min,JIN Zhong-qiu,ZHOU He-zheng,et al.Degradation of chitosan film under rabbit scleral flap and its effect on intraocular pressure[J].J Third Mil Med Univ,2007,29(13):338.

更新日期/Last Update: 2017-07-13